Reducibility of nonlinear almost periodic systems of difference equations given on a torus

  • D. I. Martynyuk
  • N. A. Perestyuk
  • A. M. Samoilenko

Abstract

Sufficient conditions are established for the reducibility of a nonlinear system of difference equations x(x+1)=x(1)+ω+P(x(t),t)+λ, where P(x,t) is a function 2π-periodic in xi(i=1,...,n) and almost periodic in t with a frequency basis α, to the system y(t+1)=y(t)+ω.
Published
25.04.1994
How to Cite
Martynyuk, D. I., N. A. Perestyuk, and A. M. Samoilenko. “Reducibility of Nonlinear Almost Periodic Systems of Difference Equations Given on a Torus”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 46, no. 4, Apr. 1994, pp. 404–410, https://umj.imath.kiev.ua/index.php/umj/article/view/5737.
Section
Research articles