On the approximation properties of Cesàro means of negative order of double Vilenkin – Fourier series

Authors

  • T. Tepnadze I. Javakhishvili Tbilisi State Univ., Georgia

DOI:

https://doi.org/10.37863/umzh.v72i3.6045

Abstract

UDC 517.5

We establish approximation properties of Ces\`{a}ro means with α,β ϵ (0,1) of Vilenkin\,--\,Fourier series. This result allows one to obtain a condition which is sufficient for the convergence of the means σα,βn,m(x,y,f) to f(x,y) in the Lp-metric.

References

Agaev, G. N.; Vilenkin, N. Ya.; Dzhafarli, G. M.; Rubinshteĭn, A. I. Мультипликативные системы функций и гармонический анализ на нульмерных группах. (Russian) [[Multiplicative systems of functions and harmonic analysis on zero-dimensional groups]] ``Èlm'', Baku, 1981. 180 pp. MR0679132

Fine, N. J. Cesàro summability of Walsh-Fourier series. Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 588--591. doi: 10.1073/pnas.41.8.588

Golubov, B. I.; Efimov, A. V.; Skvortsov, V. A. Ряды и преобразования Уолша. (Russian) [[Walsh series and transforms]] Теория и применения. [Theory and applications] ``Nauka'', Moscow, 1987. 344 pp. MR0925004

Goginava, U. On the uniform convergence of Walsh-Fourier series. Acta Math. Hungar. 93 (2001), no. 1-2, 59--70. doi: 10.1023/A:1013865315680

Goginava, Ushangi. On the approximation properties of Cesàro means of negative order of Walsh-Fourier series. J. Approx. Theory 115 (2002), no. 1, 9--20. doi: 10.1006/jath.2001.3632

Goginava, Ushangi. Uniform convergence of Cesàro means of negative order of double Walsh-Fourier series. J. Approx. Theory 124 (2003), no. 1, 96--108. doi: 10.1016/S0021-9045(03)00134-5

Goginava, Ushangi. Cesàro means of double Walsh-Fourier series. Anal. Math. 30 (2004), no. 4, 289--304. doi: 10.1007/s10476-005-0516-x

Goginava, Ushangi; Nagy, Károly. On the maximal operator of Walsh-Kaczmarz-Fejér means. Czechoslovak Math. J. 61(136) (2011), no. 3, 673--686. doi: 10.1007/s10587-011-0038-6

Gát, Gy.; Goginava, U. A weak type inequality for the maximal operator of (C,alpha)-means of Fourier series with respect to the Walsh-Kaczmarz system. Acta Math. Hungar. 125 (2009), no. 1-2, 65--83. doi: 10.1007/s10474-009-8217-8

Gát, G.; Nagy, K. Cesàro summability of the character system of the p-series field in the Kaczmarz rearrangement. Anal. Math. 28 (2002), no. 1, 1--23. doi: 10.1023/A:1014893314662

Nagy, Károly. Approximation by Cesàro means of negative order of Walsh-Kaczmarz-Fourier series. East J. Approx. 16 (2010), no. 3, 297--311. MR2789336

Simon, Péter; Weisz, Ferenc. Weak inequalities for Cesàro and Riesz summability of Walsh-Fourier series. J. Approx. Theory 151 (2008), no. 1, 1--19. doi: 10.1016/j.jat.2007.05.004

Schipp, F. Über gewisse Maximaloperatoren. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 18 (1975), 189--195 (1976). MR0430665

Schipp, F.; Wade, W. R.; Simon, P. Walsh series. An introduction to dyadic harmonic analysis. With the collaboration of J. Pál. Adam Hilger, Ltd., Bristol, 1990. {rm x}+560 pp. ISBN: 0-7503-0068-X MR1117682

Tepnadze, Tsitsino. On the approximation properties of Cesàro means of negative order of Vilenkin-Fourier series. Studia Sci. Math. Hungar. 53 (2016), no. 4, 532--544. doi: 10.1556/012.2016.53.4.1350

Tevzadze, V. Uniform (C,alpha)(1<alpha<0) summability of Fourier series with respect to the Walsh-Paley system. Acta Math. Acad. Paedagog. Nyházi. (N.S.) 22 (2006), no. 1, 41--61. MR2216766

Zhizhiashvili, Levan. Trigonometric Fourier series and their conjugates. Revised and updated translation of Some problems of the theory of trigonometric Fourier series and their conjugate series (Russian) [Tbilis. Gos. Univ., Tbilisi, 1993]. Translated from the Russian by George Kvinikadze. Mathematics and its Applications, 372. Kluwer Academic Publishers Group, Dordrecht, 1996. {rm xii}+300 pp. ISBN: 0-7923-4088-4 doi: 10.1007/978-94-009-0283-1

Zygmund, A. Trigonometric series: Vols. I, II. Second edition, reprinted with corrections and some additions Cambridge University Press, London-New York 1968 Vol. I. {rm xiv}+383 pp.; Vol. II: {rm vii}+364 pp. (two volumes bound as one). MR0236587

Downloads

Published

28.03.2020

Issue

Section

Research articles

How to Cite

Tepnadze, T. “On the Approximation Properties of Cesàro Means of Negative Order of Double Vilenkin – Fourier Series”. Ukrains’kyi Matematychnyi Zhurnal, vol. 72, no. 3, Mar. 2020, pp. 391-06, https://doi.org/10.37863/umzh.v72i3.6045.