Compensator design via the separation principle for a class of semilinear evolution equations

Keywords: Practical stabilization, Practical observer, Compensator design, Semilinear evolution equations.


UDC 517.9

We establish a compensator design via the separation principle in the practical sense for a class of semilinear evolution equations in Hilbert spaces. Under a restriction imposed on the perturbation, which is bounded by an integrable function, we propose a nonlinear time-varying practical Luenberger observer to estimate the states of the system and prove that the Luenberger observer based on the linear controller stabilizes the system. An illustrative example is given to demonstrate the applicability of our theoretical results.


M. Balas, Towards a (more) practical control theory for distributed parameter systems, Control and Dynamics Systems: Advances in Theory and Applications, Acad. Press, New York (1980).

A. Benabdallah, A separation principle for the stabilization of a class of time-delay nonlinear systems, Kybernetika, 51, 99 – 111 (2015), DOI:

A. Benabdallah, I. Ellouze, M. A. Hammami, Practical exponential stability of perturbed triangular systems and a separation principle, Asian J. Control, 13, 445 – 448 (2011), DOI:

D. S. Bernstein, D. C. Hyland, The optimal projection equations for finite-dimensional fixed-order dynamic compensation of infinite-dimensional systems, SIAM J. Control and Optim., 24, 122 – 151 (1986), DOI:

P. D. Christofides, Nonlinear and robust control of PDE systems: methods and applications to transport-reaction processes, Birkhauser, Boston (2001), DOI:

R. F. Curtain, Compensators for infinite dimensional linear systems, J. Franklin Inst., 315, 331 – 346 (1983), DOI:

R. F. Curtain, Finite-dimensional compensators for parabolic distributed systems with unbounded control and observation, SIAM J. Control and Optim., 22, 225 – 276 (1984), DOI:

R. F. Curtain, A comparaison of finite-dimensional controller designs for distributed parameter systems, Control Theory and Technol., 9, 609 – 628 (1993).

R. F. Curtain, Stabilization of boundary control distributed systems via integral dynamic output feedback of a finite-dimensional compensator, Anal. and Optim. Systems, 44, 761 – 776 (1982).

R. F. Curtain, D. Salamon, Finite-dimensional compensators for infinite-dimensional systems with unbounded input operators, SIAM J. Control and Optim., 24, 797 – 816 (1986), DOI:

R. F. Curtain, H. J. Zwart, An introduction to infinite dimensional linear systems theory, Springer-Verlag, New York (1995), DOI:

H. Damak, M. A. Hammami, Stabilization and practical asymptotic stability of abstract differential equations, Numer. Funct. Anal. and Optim., 37, 1235 – 1247 (2016), DOI:

H. Damak, I. Ellouze, M. A. Hammami, A separation principle of a class of time-varying nonlinear systems, Nonlinear Dyn. and Syst. Theory, 13, 133 – 143 (2013).

R. Datko, Extending a theorem of A. M. Liapunov to Hilbert spaces, J. Math. Anal. and Appl., 32, 610 – 616 (1970), DOI:

I. Ellouze, On the practical separation principle of time-varying perturbed systems, IMA J. Math. Control and Inform., 37, № 1, 1 – 16 (2019), DOI:

I. Ellouze, M. A. Hammami, A separation principle of time-varying dynamical systems: a practical stability approach, Math. Model. and Anal., 12, 297 – 308 (2007), DOI:

R. Gressang, G. Lamont, Observers for systems characterized by semigroups, IEEE Trans. Automat. Control, AC-20, 523 – 528 (1975), DOI:

W. Harmon Ray, Advanced process control, McGraw-Hill, New York (1981).

W. He, S. S. Ge, B. V. E How, Y. S. Choo, Dynamics and control of mechanical systems in offshore engineering, Springer-Verlag, London (2014). DOI:

S. Kitamura, H. Sakairi, M. Mishimura, Observers for disturbuted parameter systems, Electric. Eng. Jap., 92, 142 – 149 (1972). DOI:

A. Loria, E. Panteley, A separation principle for a class of Euler – Langrange systems, New Directions in Nonlinear Observer Design, Lect. Notes Control and Inform. Sci., vol. 244, Springer, London (1999), DOI:

Y. Orlov, Y. Lou, P. D. Christofides, Robust stabilization of infinite-dimensional systems using sliding-mode output feedback control, Int. J. Control, 77, 1115 – 1136 (2004), DOI:

A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer, New York (1983), DOI:

Y. Qiang, J. W. Wang, C. Y. Sun, Observer-based output feedback compensator design for linear parabolic PDEs with local piecewise control and pointwise observation in space, IET Control Theory Appl., 12, 1812 – 1821 (2018), DOI:

Y. Sakawa, T. Matsushita, Feedback stabilization for a class of distributed systems and construction of a state estimator, IEEE Trans. Automat. Control, AC-20, 748 – 753 (1975), DOI:

G. Teschl, Ordinary differential equations and dynamical systems, graduate studies in mathematics, Amer. Math. Soc. (2012), DOI:

B. Zhou, Stability analysis of nonlinear time-varying systems by Lyapunov functions with indefinite derivatives, IET Control Theory Appl., 11, 1434 – 1442 (2017), DOI:

How to Cite
Damak, H. “Compensator Design via the Separation Principle for a Class of Semilinear Evolution Equations”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 8, Oct. 2022, pp. 1073 -85, doi:10.37863/umzh.v74i8.6152.
Research articles