Compensator design via the separation principle for a class of semilinear evolution equations

Анотація

UDC 517.9
Розробка компенсатора за принципом подiлудля класу напiвлiнiйних еволюцiйних рiвнянь

Встановлено схему компенсатора через принцип подiлу в практичному сенсi для класу напiвлiнiйних еволюцiйних рiвнянь в гiльбертових просторах. За умов обмеження на збурення, яке обмежене iнтегровною функцiєю, запропоновано застосовувати нелiнiйного змiнного у часi практичного спостерiгача Люенбергера для оцiнки станiв системи та доведено, що спостерiгач Люенбергера на основi лiнiйного регулятора стабiлiзує систему. Наведено наочний приклад, що демонструє можливiсть застосування наших теоретичних результатiв.

Посилання

M. Balas, Towards a (more) practical control theory for distributed parameter systems, Control and Dynamics Systems: Advances in Theory and Applications, Acad. Press, New York (1980).

A. Benabdallah, A separation principle for the stabilization of a class of time-delay nonlinear systems, Kybernetika, 51, 99 – 111 (2015), https://doi.org/10.14736/kyb-2015-1-0099 DOI: https://doi.org/10.14736/kyb-2015-1-0099

A. Benabdallah, I. Ellouze, M. A. Hammami, Practical exponential stability of perturbed triangular systems and a separation principle, Asian J. Control, 13, 445 – 448 (2011), https://doi.org/10.1002/asjc.325 DOI: https://doi.org/10.1002/asjc.325

D. S. Bernstein, D. C. Hyland, The optimal projection equations for finite-dimensional fixed-order dynamic compensation of infinite-dimensional systems, SIAM J. Control and Optim., 24, 122 – 151 (1986), https://doi.org/10.1137/0324006 DOI: https://doi.org/10.1137/0324006

P. D. Christofides, Nonlinear and robust control of PDE systems: methods and applications to transport-reaction processes, Birkhauser, Boston (2001), https://doi.org/10.1007/978-1-4612-0185-4 DOI: https://doi.org/10.1007/978-1-4612-0185-4

R. F. Curtain, Compensators for infinite dimensional linear systems, J. Franklin Inst., 315, 331 – 346 (1983), https://doi.org/10.1016/0016-0032(83)90057-1 DOI: https://doi.org/10.1016/0016-0032(83)90057-1

R. F. Curtain, Finite-dimensional compensators for parabolic distributed systems with unbounded control and observation, SIAM J. Control and Optim., 22, 225 – 276 (1984), https://doi.org/10.1137/0322018 DOI: https://doi.org/10.1137/0322018

R. F. Curtain, A comparaison of finite-dimensional controller designs for distributed parameter systems, Control Theory and Technol., 9, 609 – 628 (1993).

R. F. Curtain, Stabilization of boundary control distributed systems via integral dynamic output feedback of a finite-dimensional compensator, Anal. and Optim. Systems, 44, 761 – 776 (1982).

R. F. Curtain, D. Salamon, Finite-dimensional compensators for infinite-dimensional systems with unbounded input operators, SIAM J. Control and Optim., 24, 797 – 816 (1986), https://doi.org/10.1137/0324050 DOI: https://doi.org/10.1137/0324050

R. F. Curtain, H. J. Zwart, An introduction to infinite dimensional linear systems theory, Springer-Verlag, New York (1995), https://doi.org/10.1007/978-1-4612-4224-6 DOI: https://doi.org/10.1007/978-1-4612-4224-6

H. Damak, M. A. Hammami, Stabilization and practical asymptotic stability of abstract differential equations, Numer. Funct. Anal. and Optim., 37, 1235 – 1247 (2016), https://doi.org/10.1080/01630563.2016.1211681 DOI: https://doi.org/10.1080/01630563.2016.1211681

H. Damak, I. Ellouze, M. A. Hammami, A separation principle of a class of time-varying nonlinear systems, Nonlinear Dyn. and Syst. Theory, 13, 133 – 143 (2013).

R. Datko, Extending a theorem of A. M. Liapunov to Hilbert spaces, J. Math. Anal. and Appl., 32, 610 – 616 (1970),https://doi.org/10.1016/0022-247X(70)90283-0 DOI: https://doi.org/10.1016/0022-247X(70)90283-0

I. Ellouze, On the practical separation principle of time-varying perturbed systems, IMA J. Math. Control and Inform., 37, № 1, 1 – 16 (2019), https://doi.org/10.1093/imamci/dny049 DOI: https://doi.org/10.1093/imamci/dny049

I. Ellouze, M. A. Hammami, A separation principle of time-varying dynamical systems: a practical stability approach, Math. Model. and Anal., 12, 297 – 308 (2007), https://doi.org/10.3846/1392-6292.2007.12.297-308 DOI: https://doi.org/10.3846/1392-6292.2007.12.297-308

R. Gressang, G. Lamont, Observers for systems characterized by semigroups, IEEE Trans. Automat. Control, AC-20, 523 – 528 (1975), https://doi.org/10.1109/tac.1975.1101021 DOI: https://doi.org/10.1109/TAC.1975.1101021

W. Harmon Ray, Advanced process control, McGraw-Hill, New York (1981).

W. He, S. S. Ge, B. V. E How, Y. S. Choo, Dynamics and control of mechanical systems in offshore engineering, Springer-Verlag, London (2014). DOI: https://doi.org/10.1007/978-1-4471-5337-5

S. Kitamura, H. Sakairi, M. Mishimura, Observers for disturbuted parameter systems, Electric. Eng. Jap., 92, 142 – 149 (1972). DOI: https://doi.org/10.1002/eej.4390920620

A. Loria, E. Panteley, A separation principle for a class of Euler – Langrange systems, New Directions in Nonlinear Observer Design, Lect. Notes Control and Inform. Sci., vol. 244, Springer, London (1999), https://doi.org/10.1007/BFb0109929 DOI: https://doi.org/10.1007/BFb0109929

Y. Orlov, Y. Lou, P. D. Christofides, Robust stabilization of infinite-dimensional systems using sliding-mode output feedback control, Int. J. Control, 77, 1115 – 1136 (2004), https://doi.org/10.1080/0020717042000273078 DOI: https://doi.org/10.1080/0020717042000273078

A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer, New York (1983), https://doi.org/10.1007/978-1-4612-5561-1 DOI: https://doi.org/10.1007/978-1-4612-5561-1

Y. Qiang, J. W. Wang, C. Y. Sun, Observer-based output feedback compensator design for linear parabolic PDEs with local piecewise control and pointwise observation in space, IET Control Theory Appl., 12, 1812 – 1821 (2018), https://doi.org/10.1049/iet-cta.2017.1358 DOI: https://doi.org/10.1049/iet-cta.2017.1358

Y. Sakawa, T. Matsushita, Feedback stabilization for a class of distributed systems and construction of a state estimator, IEEE Trans. Automat. Control, AC-20, 748 – 753 (1975), https://doi.org/10.1109/tac.1975.1101095 DOI: https://doi.org/10.1109/TAC.1975.1101095

G. Teschl, Ordinary differential equations and dynamical systems, graduate studies in mathematics, Amer. Math. Soc. (2012), https://doi.org/10.1090/gsm/140 DOI: https://doi.org/10.1090/gsm/140

B. Zhou, Stability analysis of nonlinear time-varying systems by Lyapunov functions with indefinite derivatives, IET Control Theory Appl., 11, 1434 – 1442 (2017), https://doi.org/10.1049/iet-cta.2016.1538 DOI: https://doi.org/10.1049/iet-cta.2016.1538

Опубліковано
04.10.2022
Як цитувати
DamakH. «Compensator Design via the Separation Principle for a Class of Semilinear Evolution Equations». Український математичний журнал, вип. 74, вип. 8, Жовтень 2022, с. 1073 -85, doi:10.37863/umzh.v74i8.6152.
Розділ
Статті