On the high energy solitary waves solutions for a generalized KP equation in bounded domain

  • Jebari Rochdi Dep. Math., College Sci. and Humanities-Al Quwayiyah, Shaqra Univ., Riyadh, Kingdom of Saudi Arabia; Dep. Math., Faculte Sci. Tunis, Univ. Tunis El-Manar, Tunisie
Keywords: Generalized KP equation, variant fountain theorems, variational methods, infinitely many high energy solitary waves solutions.

Abstract

UDC 517.9

We are mainly concerned with the existence of infinitely many high energy solitary waves solutions for a class of generalized Kadomtsev – Petviashvili equation (KP equation) in bounded domain. The aim of this paper is to fill the gap in the relevant literature stated in a previous paper (J. Xu, Z. Wei, Y. Ding, Stationary solutions for a generalized Kadomtsev – Petviashvili equation in bounded domain, Electron. J. Qual. Theory Differ. Equ., 2012, № 68, 1 – 18 (2012)). Under more relaxed assumption on the nonlinearity involved in KP equation, we obtain a new result on the existence of infinitely many high energy solitary waves solutions via a variant fountain theorems.

References

D. David, D. Levi, P. Winternitz, Integrable nonlinear equations for water waves in straits of varying depth and width, Stud. Appl. Math., 76, no 2, 133 – 168 (1987), https://doi.org/10.1002/sapm1987762133

D. David, D. Levi, P. Winternitz, Solitary waves in shallow seas of variable depth and in marine straits, Stud. Appl. Math., 80, no 1, 1 – 23 (1989), https://doi.org/10.1002/sapm19898011

C. O. Alves, O. H. Miyagaki, Existence, regularity and concentration phenomenon of nontrivial solitary waves for a class of generalized variable coefficient Kadomtsev – Petviashvili equation, J. Math. Phys., 58, 081503 (2017), https://doi.org/10.1063/1.4997014

C. O. Alves, O. H. Miyagaki, A. Pomponio, Solitary waves for a class of generalized Kadomtsev – Petviashvili equation in $Bbb{R}^N$ with positive and zero mass, J. Math. Anal. Appl., 477, no. 1, 523 – 535 (2019), https://doi.org/10.1016/j.jmaa.2019.04.044

P. Isaza, J. Mejía, Local and global Cauchy problem for the Kadomtsev – Petviashvili equation (KP-II) in Sobolev spaces with negative indices, Commun. Partial Differ. Equ., 26, no 5, 1027 – 1054 (2001), https://doi.org/10.1081/PDE-100002387

B. Xuan, Nontrivial stationary solutions to GKP equation in bounded domain, Appl. Anal., 82, no. 11, 1039 – 1048 (2003), https://doi.org/10.1080/00036810310001613124

D. Lannes, Consistency of the KP approximation: Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, AIMS, Wilmington, NC, USA, 517 – 525 (2003).

D. Lannes, J. C. Saut, Weakly transverse Boussinesq systems and the KP approximation, Nonlinearity, 19, no. 12, 2853 – 2875 (2006), https://doi.org/10.1088/0951-7715/19/12/007

I. M. Krichever, S. P. Novikov, Holomorphic bundles over algebraic curves and nonlinear equations, Uspekhi Mat. Nauk, 35, no 6, 47 – 68 (1980).

A. M. Wazwaz, Multi-front waves for extended form of modified Kadomtsev – Petviashvili equation, Appl. Math. and Mech. (Engl. ed.), 32, no 7, 875 – 880 (2011), https://doi.org/10.1007/s10483-011-1466-6

Y. Zhenya, Z. Hongqin, Similarity reductions for $2+1$-dimensional variable coefficient generalized Kadomtsev – Petviashvili equation, Appl. Math. Mech. (Engl. ed.), 21, no 6, 645 – 650 (2000), https://doi.org/10.1007/BF02460186

X. P. Wang, M. J. Ablowitz, H. Segur, Wave collapse and instability of solitary waves of a generalized Kadomtsev – Petviashvili equation, Phys. D: Nonlinear Phenomena, 78, no 3, 241 – 265 (1994), https://doi.org/10.1016/0167-2789(94)90118-X

V. A. Vladimirov, C. Ma¸czka, A. Sergyeyev, S. Skurativskyi, Stability and dynamical features of solitary wave solutions for a hydrodynamic-type system taking into account nonlocal effects, Commun. Nonlinear Sci. Numer. Simul., 19, no 6, 1770 – 1782 (2014), https://doi.org/10.1016/j.cnsns.2013.10.027

T. V. Karamysheva, N. A. Magnitskii, Traveling waves impulses and diffusion chaos in excitable media, Commun. Nonlinear Sci. Numer. Simul., 19, no 6, 1742 – 1745 (2014), https://doi.org/10.1016/j.cnsns.2013.09.033

Z. X. Dai, Y. F. Xu, Bifurcations of traveling wave solutions and exact solutions to generalized Zakharov equation and Ginzburg – Landau equation, Appl. Math. Mech. (Engl. ed.), 32, no 12, 1615 – 1622 (2011), https://doi.org/10.1007/s10483-011-1528-9

Z. Yong, Strongly oblique interactions between internal solitary waves with the same model, Appl. Math. Mech. (Engl. ed.), 18, no 10, 957 – 962 (1997), https://doi.org/10.1007/BF00189286

B. Xuan, Multiple stationary solutions to GKP equation in a bounded domain, Bolet´ın de Matematicas Nueva Serie, 9, no 1, 11 – 22 (2002).

A. D. Bouard, J. C. Saut, Sur les ondes solitaires des équations de Kadomtsev-Petviashvili. (French) [[On the solitary waves of Kadomtsev-Petviashvili equations]], Comptes Rendus de l’Academie des Sciences de Paris, 320, no. 3, 1315 – 1328 (1995).

A. D. Bouard, J. C. Saut, Solitary waves of generalized Kadomtsev-Petviashili equations, Annales de l’Institut Henri Poincare C, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 14, no. 2, 211 – 236 (1997).

M. Willem, Minimax theorems, Birkhauser Basel, Boston (1996), https://doi.org/10.1007/978-1-4612-4146-1

B. J. Xuan, Nontrivial solitary waves of GKP equation in multi-dimensional spaces, Revista Colombiana de Matematicas, 37, no 1, 11 – 23 (2003).

Z. Liang, J. Su, Existence of solitary waves to a generalized Kadomtsev – Petviashvili equation, Acta Math. Sci., 32 B, no 3, 1149 – 1156 (2012), https://doi.org/10.1016/S0252-9602(12)60087-3

J. Xu, Z. Wei, Y. Ding, Stationary solutions for a generalized Kadomtsev – Petviashvili equation in bounded domain, Electron. J. Qual. Theory Differ. Equ., (2012), No. 68, 1 – 18 (2012), https://doi.org/10.14232/ejqtde.2012.1.68

W. M. Zou, Variant fountain theorem and their applications, Manuscripta Math., 104, no 3, 343 – 358 (2001), https://doi.org/10.1007/s002290170032

X. H. Meng, Wronskian and Grammian determinant structure solutions for a variable-coefficient forced Kadomtsev – Petviashvili equation in fluid dynamics, Phys. A: Stat. Mech. and its Appl., 413(C), 635 – 642 (2014), https://doi.org/10.1016/j.physa.2014.07.015

X. H. Meng, B. Tian, Q. Feng, Z. Z. Yao, Y. T. Gao, Painleve analysis and determinant Solutions of a ´ (3 + 1)- dimensional variable-coefficient Kadomtsev – Petviashvili equation in Wronskian and Grammian form, Commun. Theor. Phys. (Beijing), 51, no 6, 1062–1068 (2009), https://doi.org/10.1088/0253-6102/51/6/18

B. Tian, Symbolic computation of Backlund transformation and exact solutions to the variant Boussinesq model for water waves, Int. J. Modern Phys. C, 10, no 6, 983 – 987 (1999), https://doi.org/10.1142/S0129183199000784

P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Amer. Math. Soc., Providence, Rhode Island (1986), https://doi.org/10.1090/cbms/065

L. Jeanjean, On the existence of bounded Palais – Smale sequences and application to a Landesman – Lazer type problem set on ${R}^N$ , Proc. Royal Soc. Edinburgh, 129(A), no. 4, 787 – 809 (1999), https://doi.org/10.1017/S0308210500013147

Published
26.04.2022
How to Cite
RochdiJ. “On the High Energy Solitary Waves Solutions for a Generalized KP Equation in Bounded Domain”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 3, Apr. 2022, pp. 311-22, doi:10.37863/umzh.v74i3.6253.
Section
Research articles