On the high energy solitary waves solutions for a generalized KP equation in bounded domain
Abstract
UDC 517.9
We are mainly concerned with the existence of infinitely many high energy solitary waves solutions for a class of generalized Kadomtsev – Petviashvili equation (KP equation) in bounded domain. The aim of this paper is to fill the gap in the relevant literature stated in a previous paper (J. Xu, Z. Wei, Y. Ding, Stationary solutions for a generalized Kadomtsev – Petviashvili equation in bounded domain, Electron. J. Qual. Theory Differ. Equ., 2012, № 68, 1 – 18 (2012)). Under more relaxed assumption on the nonlinearity involved in KP equation, we obtain a new result on the existence of infinitely many high energy solitary waves solutions via a variant fountain theorems.
References
D. David, D. Levi, P. Winternitz, Integrable nonlinear equations for water waves in straits of varying depth and width, Stud. Appl. Math., 76, no 2, 133 – 168 (1987), https://doi.org/10.1002/sapm1987762133
D. David, D. Levi, P. Winternitz, Solitary waves in shallow seas of variable depth and in marine straits, Stud. Appl. Math., 80, no 1, 1 – 23 (1989), https://doi.org/10.1002/sapm19898011
C. O. Alves, O. H. Miyagaki, Existence, regularity and concentration phenomenon of nontrivial solitary waves for a class of generalized variable coefficient Kadomtsev – Petviashvili equation, J. Math. Phys., 58, 081503 (2017), https://doi.org/10.1063/1.4997014
C. O. Alves, O. H. Miyagaki, A. Pomponio, Solitary waves for a class of generalized Kadomtsev – Petviashvili equation in $Bbb{R}^N$ with positive and zero mass, J. Math. Anal. Appl., 477, no. 1, 523 – 535 (2019), https://doi.org/10.1016/j.jmaa.2019.04.044
P. Isaza, J. Mejía, Local and global Cauchy problem for the Kadomtsev – Petviashvili equation (KP-II) in Sobolev spaces with negative indices, Commun. Partial Differ. Equ., 26, no 5, 1027 – 1054 (2001), https://doi.org/10.1081/PDE-100002387
B. Xuan, Nontrivial stationary solutions to GKP equation in bounded domain, Appl. Anal., 82, no. 11, 1039 – 1048 (2003), https://doi.org/10.1080/00036810310001613124
D. Lannes, Consistency of the KP approximation: Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, AIMS, Wilmington, NC, USA, 517 – 525 (2003).
D. Lannes, J. C. Saut, Weakly transverse Boussinesq systems and the KP approximation, Nonlinearity, 19, no. 12, 2853 – 2875 (2006), https://doi.org/10.1088/0951-7715/19/12/007
I. M. Krichever, S. P. Novikov, Holomorphic bundles over algebraic curves and nonlinear equations, Uspekhi Mat. Nauk, 35, no 6, 47 – 68 (1980).
A. M. Wazwaz, Multi-front waves for extended form of modified Kadomtsev – Petviashvili equation, Appl. Math. and Mech. (Engl. ed.), 32, no 7, 875 – 880 (2011), https://doi.org/10.1007/s10483-011-1466-6
Y. Zhenya, Z. Hongqin, Similarity reductions for $2+1$-dimensional variable coefficient generalized Kadomtsev – Petviashvili equation, Appl. Math. Mech. (Engl. ed.), 21, no 6, 645 – 650 (2000), https://doi.org/10.1007/BF02460186
X. P. Wang, M. J. Ablowitz, H. Segur, Wave collapse and instability of solitary waves of a generalized Kadomtsev – Petviashvili equation, Phys. D: Nonlinear Phenomena, 78, no 3, 241 – 265 (1994), https://doi.org/10.1016/0167-2789(94)90118-X
V. A. Vladimirov, C. Ma¸czka, A. Sergyeyev, S. Skurativskyi, Stability and dynamical features of solitary wave solutions for a hydrodynamic-type system taking into account nonlocal effects, Commun. Nonlinear Sci. Numer. Simul., 19, no 6, 1770 – 1782 (2014), https://doi.org/10.1016/j.cnsns.2013.10.027
T. V. Karamysheva, N. A. Magnitskii, Traveling waves impulses and diffusion chaos in excitable media, Commun. Nonlinear Sci. Numer. Simul., 19, no 6, 1742 – 1745 (2014), https://doi.org/10.1016/j.cnsns.2013.09.033
Z. X. Dai, Y. F. Xu, Bifurcations of traveling wave solutions and exact solutions to generalized Zakharov equation and Ginzburg – Landau equation, Appl. Math. Mech. (Engl. ed.), 32, no 12, 1615 – 1622 (2011), https://doi.org/10.1007/s10483-011-1528-9
Z. Yong, Strongly oblique interactions between internal solitary waves with the same model, Appl. Math. Mech. (Engl. ed.), 18, no 10, 957 – 962 (1997), https://doi.org/10.1007/BF00189286
B. Xuan, Multiple stationary solutions to GKP equation in a bounded domain, Bolet´ın de Matematicas Nueva Serie, 9, no 1, 11 – 22 (2002).
A. D. Bouard, J. C. Saut, Sur les ondes solitaires des équations de Kadomtsev-Petviashvili. (French) [[On the solitary waves of Kadomtsev-Petviashvili equations]], Comptes Rendus de l’Academie des Sciences de Paris, 320, no. 3, 1315 – 1328 (1995).
A. D. Bouard, J. C. Saut, Solitary waves of generalized Kadomtsev-Petviashili equations, Annales de l’Institut Henri Poincare C, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 14, no. 2, 211 – 236 (1997).
M. Willem, Minimax theorems, Birkhauser Basel, Boston (1996), https://doi.org/10.1007/978-1-4612-4146-1
B. J. Xuan, Nontrivial solitary waves of GKP equation in multi-dimensional spaces, Revista Colombiana de Matematicas, 37, no 1, 11 – 23 (2003).
Z. Liang, J. Su, Existence of solitary waves to a generalized Kadomtsev – Petviashvili equation, Acta Math. Sci., 32 B, no 3, 1149 – 1156 (2012), https://doi.org/10.1016/S0252-9602(12)60087-3
J. Xu, Z. Wei, Y. Ding, Stationary solutions for a generalized Kadomtsev – Petviashvili equation in bounded domain, Electron. J. Qual. Theory Differ. Equ., (2012), No. 68, 1 – 18 (2012), https://doi.org/10.14232/ejqtde.2012.1.68
W. M. Zou, Variant fountain theorem and their applications, Manuscripta Math., 104, no 3, 343 – 358 (2001), https://doi.org/10.1007/s002290170032
X. H. Meng, Wronskian and Grammian determinant structure solutions for a variable-coefficient forced Kadomtsev – Petviashvili equation in fluid dynamics, Phys. A: Stat. Mech. and its Appl., 413(C), 635 – 642 (2014), https://doi.org/10.1016/j.physa.2014.07.015
X. H. Meng, B. Tian, Q. Feng, Z. Z. Yao, Y. T. Gao, Painleve analysis and determinant Solutions of a ´ (3 + 1)- dimensional variable-coefficient Kadomtsev – Petviashvili equation in Wronskian and Grammian form, Commun. Theor. Phys. (Beijing), 51, no 6, 1062–1068 (2009), https://doi.org/10.1088/0253-6102/51/6/18
B. Tian, Symbolic computation of Backlund transformation and exact solutions to the variant Boussinesq model for water waves, Int. J. Modern Phys. C, 10, no 6, 983 – 987 (1999), https://doi.org/10.1142/S0129183199000784
P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Amer. Math. Soc., Providence, Rhode Island (1986), https://doi.org/10.1090/cbms/065
L. Jeanjean, On the existence of bounded Palais – Smale sequences and application to a Landesman – Lazer type problem set on ${R}^N$ , Proc. Royal Soc. Edinburgh, 129(A), no. 4, 787 – 809 (1999), https://doi.org/10.1017/S0308210500013147
Copyright (c) 2022 Rochdi Jebari
This work is licensed under a Creative Commons Attribution 4.0 International License.