О локальной теореме для предельных устойчивых распределений

Authors

  • Б. В. Гнеденко

Abstract

Введение. Недавно мной была доказана теорема [1], включившая в себя в качестве простейшего частного случая классический результат теории вероятностей — локальную теорему Муавра-Лапласа. Употребленный при этом метод был специально приспособлен к случаю нормального предельного распределения и не давал возможности обобщить полученный результат на случай других предельных распределений. В настоящей статье я видоизменяю первоначальный прием доказательства. Это позволяет обобщить локальную теорему на случай предельных устойчивых законов и значительно упростить первоначальное доказательство моей прежней теоремы. Замечу при этом, что если для всех устойчивых законов (за исключением нормального) теорема получила окончательную формулировку, то для нормального закона остался нерассмотренным случай, когда слагаемые имеют бесконечные дисперсии.

References

1. Б. В. Гнеденко, <em>О локальной предельной теореме теории вероятностей</em>, Успехи математических наук, т. <b>3. </b>, вып. 3, стр. 187—194, 1948.
2. А. Я. Xинчин, <em>Предельные законы для сумм независимых случайных величин</em>, ГОНТИ, 1938.
3. Б. В. Гнеденко, <em>К теории областей притяжения устойчивых законов<em>, Ученые записки Московского университета, вып. XXX, стр. 61—81, 1939.

Downloads

Published

10.10.1949

Issue

Section

Research articles

How to Cite

Гнеденко, Б. В. “О локальной теореме для предельных устойчивых распределений”. Ukrains’kyi Matematychnyi Zhurnal, vol. 1, no. 4, Oct. 1949, pp. 3-15, https://umj.imath.kiev.ua/index.php/umj/article/view/6592.