О локальной теореме для предельных устойчивых распределений

  • Б. В. Гнеденко

Анотація

Введение. Недавно мной была доказана теорема [1], включившая в себя в качестве простейшего частного случая классический результат теории вероятностей — локальную теорему Муавра-Лапласа. Употребленный при этом метод был специально приспособлен к случаю нормального предельного распределения и не давал возможности обобщить полученный результат на случай других предельных распределений. В настоящей статье я видоизменяю первоначальный прием доказательства. Это позволяет обобщить локальную теорему на случай предельных устойчивых законов и значительно упростить первоначальное доказательство моей прежней теоремы. Замечу при этом, что если для всех устойчивых законов (за исключением нормального) теорема получила окончательную формулировку, то для нормального закона остался нерассмотренным случай, когда слагаемые имеют бесконечные дисперсии.

Посилання

1. Б. В. Гнеденко, О локальной предельной теореме теории вероятностей, Успехи математических наук, т. 3. , вып. 3, стр. 187—194, 1948.
2. А. Я. Xинчин, Предельные законы для сумм независимых случайных величин, ГОНТИ, 1938.
3. Б. В. Гнеденко, К теории областей притяжения устойчивых законов, Ученые записки Московского университета, вып. XXX, стр. 61—81, 1939.
Опубліковано
10.10.1949
Як цитувати
ГнеденкоБ. В. «О локальной теореме для предельных устойчивых распределений». Український математичний журнал, вип. 1, вип. 4, Жовтень 1949, с. 3-15, https://umj.imath.kiev.ua/index.php/umj/article/view/6592.
Розділ
Статті