On a property of the Nevanlinna characteristic
Abstract
UDC 517.53
We prove the existience of entire functions $f$ of an arbitrary lower order $\lambda\ge 0$ and the order $\rho=\lambda+1$ such that
\begin{equation*}
\underset{r \to +\infty}{\overline{\lim}}T(r + 1, f)/T(r, f) > 1.
\end{equation*}
Obtained results show that the condition $\rho - \lambda < 1$ of Valiron's theorem can not be improved.
References
A. A. Gol`dberg, I. V. Ostrovskij, Raspredelenie znachenij meromorfny`kh funkczij, Moskva, Nauka (1970).
R. Nevanlinna, Analytic function, Springer-Verlag, New York (1970). DOI: https://doi.org/10.1007/978-3-642-85590-0
J. Clunie, On integral functions having prescribed asymptotic growth, Can. J. Math., 17, № 3, 396 – 404 (1965), https://doi.org/10.4153/CJM-1965-040-8 DOI: https://doi.org/10.4153/CJM-1965-040-8
Copyright (c) 2021 Микола Заболоцький, Тарас Заболоцький
This work is licensed under a Creative Commons Attribution 4.0 International License.