Confidence disc and square for Cauchy distributions
Abstract
UDC 519.21
We construct a confidence region of parameters for a sample of size $N$ from the Cauchy distributed random variables. Although Cauchy distribution has two parameters, a location parameter $\mu \in\mathbb{R}$ and a scale parameter $\sigma > 0,$ we infer them simultaneously by regarding them as a single complex parameter $\gamma := \mu + i\sigma.$ The region should be a domain in the complex plane. We give a simple and concrete formula to give the region as a disc and as a square.
References
Y. Akaoka, Parameter estimation using complex valued moments for Cauchy distributions, Master’s thesis, Shinshu Univ. (2020).
Y. Akaoka, K. Okamura, Y. Otobe, Bahadur efficiency of the maximum likelihood estimator and one-step estimator for quasi-arithmetic means of the Cauchy distribution, Ann. Inst. Statist. Math. (2022). DOI: https://doi.org/10.1007/s10463-021-00818-y
Y. Akaoka, K. Okamura, Y. Otobe, Limit theorems for quasiarithmetic means of random variables with applications to point estimations for the Cauchy distribution, Braz. J. Probab. and Stat. (2022). DOI: https://doi.org/10.1214/22-BJPS531
G. V. C. Freue, The Pitman estimator of the Cauchy location parameter, J. Statist. Plann. and Inference, 137, № 6, 1900–1913 (2007). DOI: https://doi.org/10.1016/j.jspi.2006.05.002
T. S. Ferguson, Maximum likelihood estimates of the parameters of the Cauchy distribution for samples of size 3 and 4, J. Amer. Statist. Assoc., 73, № 361, 211–213 (1978). DOI: https://doi.org/10.1080/01621459.1978.10480031
G. Haas, L. Bain, C. Antle, Inferences for the Cauchy distribution based on maximum likelihood estimators, Biometrika, 57, № 2, 403–408 (1970). DOI: https://doi.org/10.1093/biomet/57.2.403
G. N. Haas, Statistical inferences for the Cauchy distribution based on maximum likelihood estimators, Doct. diss., Univ. Missouri-Rolla (1969).
D. V. Hinkley, Likelihood inference about location and scale parameters, Biometrika, 65, № 2, 253–261 (1978). DOI: https://doi.org/10.1093/biomet/65.2.253
O. Y. Kravchuk, P. K. Pollett, Hodges–Lehmann scale estimator for Cauchy distribution, Commun. Statist. Theory and Meth., 41, № 20, 3621–3632 (2012). DOI: https://doi.org/10.1080/03610926.2011.563016
J. F. Lawless, Conditional confidence interval procedures for the location and scale parameters of the Cauchy and logistic distributions, Biometrika, 59, № 2, 377–386 (1972). DOI: https://doi.org/10.1093/biomet/59.2.377
P. McCullagh, On the distribution of the Cauchy maximum-likelihood estimator, Proc. Roy. Soc. London Ser. A, 440, 475–479 (1993). DOI: https://doi.org/10.1098/rspa.1993.0028
P. McCullagh, Möbius transformation and Cauchy parameter estimation, Ann. Statist., 24, № 2, 787–808 (1996). DOI: https://doi.org/10.1214/aos/1032894465
K. Okamura, Y. Otobe, Characterizations of the maximum likelihood estimator of the Cauchy distribution, Lobachevskii J. Math., 43, № 9, 2576–2590 (2022). DOI: https://doi.org/10.1134/S1995080222120216
T. J. Rothenberg, F. M. Fisher, C. B. Tilanus, A note on estimation from a Cauchy sample, J. Amer. Statist. Assoc., 59, № 306, 460–463 (1964). DOI: https://doi.org/10.1080/01621459.1964.10482170
Jun Shao, Mathematical statistics, 2nd ed., Springer New York (2003). DOI: https://doi.org/10.1007/b97553
A. W. van der Vaart, Asymptotic statistics, Cambridge Ser. in Statistical and Probabilistic Mathematics, Cambridge Univ. Press (1998).
J. Vrbik, Accurate confidence regions based on MLEs, Adv. and Appl. Stat., 32, № 1, 33–56 (2013).
V. M. Zolotarev, One-dimensional stable distributions, Amer. Math. Soc. (1986). DOI: https://doi.org/10.1090/mmono/065
Copyright (c) 2023 Kazuki Okamura
This work is licensed under a Creative Commons Attribution 4.0 International License.