Equations in a Hilbert space whose solution sets are invariant with respect to a group isomorphic to a one-parameter group of unitary operators
Abstract
We construct classes of equations in a Hilbert space whose sets of solution are invariant with respect to a group isomorphic to a one-parameter group of unitary operators. It is shown that the unbounded solutions of these equations are unstable.
The applications of the obtained results to nonlinear mechanics are presented.
References
Moren, Kristof. Методы Гильбертова пространства. (Russian) [[Methods of Hilbert space]] Translated from the Polish by V. É. Ljance. Edited by Ju. M. Berezanskiĭ and E. A. Gorin Izdat. ``Mir'', Moscow 1965 570 pp. MR0200693
Pontryagin, L. S. Непрерывные группы. (Russian) [[Continuous groups]] Fourth edition. ``Nauka'', Moscow, 1984. 520 pp. MR0767087
A. N. Godunov, О теореме Пеано в банаховых пространствах (Russian) [[The Peano theorem in Banach spaces]], Funkczion. analiz i ego pril., 9, vy`p. 1, 59 – 60 (1975). MR364797
Daletskiĭ, Yu. L.; Kreĭn, M. G. Устой чивость решений дифференциальных уравнений в банаховом пространстве. (Russian) [[Stability of solutions of differential equations in Banach space]] Nonlinear Analysis and its Applications Series. Izdat. ``Nauka'', Moscow, 1970. 534 pp. MR0352638
Myshkis, A. D. Лекции по высшей математике. (Russian) [[Lectures on higher mathematics]] Fourth, stereotyped edition. Izdat. ``Nauka'', Moscow, 1973. 640 pp. MR0349292
V. Yu. Slyusarchuk, Математична модель Сонячної системи з урахуванням швидкостi гравiтацiї (Russian) [[ Matematichna model` Sonyachnoyi sistemi z urakhuvannyam shvidkosti gravitacziyi]], Nelinijni kolivannya, 21, № 2, 238 – 261 (2018).
V. Yu. Slyusarchuk, Некеплеровiсть та нестiйкiсть руху двох тiл, спричиненi скiнченнiстю швидкостi гравiтацiї (Russian) [[ Nekeplerovist` ta nestijkist` rukhu dvokh til, sprichineni skinchennistyu shvidkosti gravitacziyi]], Nelinijni kolivannya, 21, no 3, 397 – 419 (2018).
V. I. Arnol`d, V. V. Kozlov, A. N. Nejshtadt, Математические аспекты классической и небесной механики (Russian) [[Mathematical aspects of classical and celestial mechanics]], URSS, Moskva (2002). MR833508
S. M. Kopejkin, E`. Fomalont, Фундаментальный предел скорости гравитации и его измерение (Russian) [[Fundamental`ny`j predel skorosti gravitaczii i ego izmerenie]], Zemlya i Vselennaya, 3 (2004).
Copyright (c) 2020 Василь Юхимович Слюсарчук
This work is licensed under a Creative Commons Attribution 4.0 International License.