Study of analytic function related to the Le Roy-type Mittag-Leffler function

  • K. Mehrez Department of Mathematics, Kairouan Preparatory Institute for Engineering Studies, University of Kairouan, Tunisia
Keywords: Le Roy-type Mittag-leffler function, Analytic function, Univalent, starlike, convex, close-to-convex functions


UDC 517.547

We study some geometric properties (such as univalence, starlikeness, convexity, and close-to-convexity) of Le Roy-type Mittag-Leffler function. In order to achieve our goal, we use new two-sided inequalities for the digamma function. Some examples are also provided to illustrate the  obtained results. Interesting consequences are deduced to show that these results improve several results available in the literature for the  two-parameter  Mittag-Leffler function.


M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover, New York (1965). DOI:

J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math., 17, 12–29 (1915). DOI:

D. Bansal, J. K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. and Elliptic Equat., 61, № 3, 338–350 (2016). DOI:

S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku A, 40, № 2, 167–188 (1935).

P. L. Duren, Univalent Functions, Grundlehren der mathematischen Wissenschaften, 259, Springer-Verlag, New York etc. (1983).

T. H. MacGregor, A class of univalent functions, Proc. Amer. Math. Soc., 15, 311–317 (1964). DOI:

T. H. MacGregor, The radius of univalence of certain analytic functions II, Proc. Amer. Math. Soc., 14, 521–524 (1963). DOI:

S. Noreen, M. Raza, M. U. Din, S. Hussain, On certain geometric properties of normalized Mittag-Leffler functions, U. P. B. Sci. Bull. Ser. A, 81, № 4, 167–174 (2019).

S. Noreen, M. Raza, J.-L. Liu, M. Arif, Geometric properties of normalized Mittag-Leffler functions, Symmetry, 11, № 1, Article ID 45 (2019). DOI:

S. Noreen, M. Raza, S. N. Malik, Certain geometric properties of Mittag-Leffler functions, J. Inequal. and Appl., 2019, Article 94 (2019). DOI:

J. K. Prajapat, Certain geometric properties of the Wright function, Integral Transforms and Spec. Funct., 26, № 3, 203–212 (2015). DOI:

K. Mehrez, Some geometric properties of class of functions related to the Fox–Wright functions, Banach J. Math. Anal., 14, № 3, 1222–1240 (2020). DOI:

A. Wiman, Über den Fundamentalsatz in der Theorie der Funktionen $E_a(x),$} Acta Math., 29, 191–201 (1905). DOI:

M. G. Mittag-Leffler, Sur la nouvelle function $e_alpha(x)$, Compt. Rend. hebdomadaires de Séances l'Acad. Sci., 137, 554–558 (1903).

M. G. Mittag-Leffler, Une généralisation de l'intégrale de Laplace–Abel, Compt. Rend. hebdomadaires de Séances l'Acad. Sci., 136, 537–539 (1903).

S. Gerhold, Asymptotics for a variant of the Mittag-Leffler function, Integral Transforms and Spec. Funct., 23, № 6, 397–403 (2012). DOI:

R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler functions, related topics and applications, Springer-Verlag, Berlin, Heidelberg (2014). DOI:

D. V. Widder, The Laplace transform, Princeton Univ. Press, Princeton (1941).

H. M. Zayed, T. Bulboaca, On some geometric properties for the combination of generalized Lommel–Wright function, J. Inequal. and Appl., 158, (2021). DOI:

H. M. Zayed, T. Bulboaca, J. Morais, The geometric characterizations for a combination of generalized Struve functions, Comput. Methods and Funct. Theory (2021). DOI:

How to Cite
Mehrez, K. “Study of Analytic Function Related to the Le Roy-Type Mittag-Leffler Function”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, no. 5, May 2023, pp. 628 -49, doi:10.37863/umzh.v75i5.7013.
Research articles