Coefficient estimates for starlike and convex functions related to sigmoid functions
Abstract
UDC 517.5
We give sharp coefficient bounds for starlike and convex functions related to modified sigmoid functions. We also provide some sharp coefficients bounds for the inverse functions and sharp bounds for the initial logarithmic coefficients and some coefficient differences.
References
R. M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc., 26, 63–71 (2003).
D. Alimohammadi, E. A. Adegani, T. Bulboacă, N. E. Cho, Logarithmic coefficient bounds and coefficient conjectures for classes associated with convex functions, J. Funct. Spaces, 2021, Article 6690027 (2021). DOI: https://doi.org/10.1155/2021/6690027
K. Bano, M. Raza, D. K. Thomas, On the coefficients of $ B_{1}(alpha)$ Bazilevič functions, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 115, Article 7 (2021). DOI: https://doi.org/10.1007/s13398-020-00947-8
N. E. Cho, S. Kumar, V. Kumar, Hermitian–Toeplitz and Hankel determinants for certain starlike functions, Asian-Eur. J. Math., 15, № 3, Article 2250042 (2022). DOI: https://doi.org/10.1142/S1793557122500425
P. L. Duren, Univalent functions, Berlin, Heidelberg, Springer (1983).
J. E. Brown, A. Tsao, On the Zalcman conjecture for starlike and typically real functions, Math. Z., 191, 467–474 (1986). DOI: https://doi.org/10.1007/BF01162720
P. L. Duren, Coefficients of univalent functions, Bull. Amer. Math. Soc. (5), 83, 891–911 (1977). DOI: https://doi.org/10.1090/S0002-9904-1977-14324-3
P. Goel, S. S. Kumar, Certain class of starlike functions associated with modified sigmoid function, Bull. Malays. Math. Sci. Soc., 43, 957–991 (2020). DOI: https://doi.org/10.1007/s40840-019-00784-y
M. G. Khan, B. Ahmad, G. Murugusundaramoorthy, R. Chinram, W. K. Mashwani, Applications of modified sigmoid functions to a class of starlike functions, J. Funct. Spaces, 2020, Article ID 8844814 (2020). DOI: https://doi.org/10.1155/2020/8844814
W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Proc. Conf. Complex Analysis, Z. Li, F. Ren, L. Yang, S. Zhang (Eds), Int. Press (1994), p.~157–169.
D. V. Prokhorov, J. Szynal, Inverse coefficients for $(alpha,beta )$-convex functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 35, 125–143 (1981).
V. Ravichandran, S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Math. Acad. Sci. Paris, 353, 505–510 (2015). DOI: https://doi.org/10.1016/j.crma.2015.03.003
Y. J. Sim, D. K. Thomas, A note on spirallike functions, Bull. Aust. Math. Soc., 105, № 1, 117–123 (2022). DOI: https://doi.org/10.1017/S0004972721000198
Y. J. Sim, D. K. Thomas, On the difference of inverse coefficients of univalent functions, Symmetry, 12, № 12 (2020). DOI: https://doi.org/10.3390/sym12122040
A. Vasudevarao, A. Pandey, The Zalcman conjecture for certain analytic and univalent functions, J. Math. Anal. and Appl., 492, № 2 (2020). DOI: https://doi.org/10.1016/j.jmaa.2020.124466
Copyright (c) 2023 Mohsan Raza, Derek K. Thomas, Amina Riaz
This work is licensed under a Creative Commons Attribution 4.0 International License.