On one Reverse asymptotic equality

Authors

  • O. V. Motorna Taras Shevchenko University of Kyiv
  • V. I. Shevchuk Taras Shevchenko University of Kyiv

DOI:

https://doi.org/10.37863/umzh.v74i4.7111

Keywords:

Bernstein constants, Chebyshev nodes, higher order asymptotics, best uniform approximation, Gamma-function

Abstract

УДК 517.5

We clarify an asymptotic equality proved by Revers for an interpolation analog of the classic Bernstein – Varga – Carpenter result.

References

M. Revers, Extremal polynomials and entire functions of exponential type, Res. Math., 2018, № 73, Article 73:109 (2018), https://doi.org/10.1007/s00025-018-0870-1 DOI: https://doi.org/10.1007/s00025-018-0870-1

M. Revers, Asymptotics of polynomial interpolation and the Bernstein constants, Res. Math., 2021, № 76, Article 76:100 (2021), https://doi.org/10.1007/s00025-021-01408-3 DOI: https://doi.org/10.1007/s00025-021-01408-3

Published

23.05.2022

Issue

Section

Short communications

How to Cite

Motorna, O. V., and V. I. Shevchuk. “On One Reverse Asymptotic Equality”. Ukrains’kyi Matematychnyi Zhurnal, vol. 74, no. 4, May 2022, pp. 572-6, https://doi.org/10.37863/umzh.v74i4.7111.