On one property of the modulus of continuity for periodic functions of higher orders

  • Yu. A. Maksymenkova Institute Of Industrial And Business Technologies Ukrainian State University Of Science And Technologies
  • Т. F. Michaylova Institute Of Industrial And Business Technologies Ukrainian State University Of Science And Technologies

Abstract

UDC 517.5

For the moduli of continuity of $2\pi$-periodic functions $\omega_k(f,h)$ of order $k = 1,2,\ldots, $ we prove the inequalities
$$
\omega_k(f,\pi)\leq\frac{2^k}{C_k^{[\frac{k}{2}]}}\frac{1}{\pi}\int\limits_0^{\pi}\omega_k(f,h)dh,
$$
for even $k.$
The inequalities are exact in the spaces $C_{2\pi}$ and $L_1[-\pi,\pi]$.

Author Biography

Т. F. Michaylova , Institute Of Industrial And Business Technologies Ukrainian State University Of Science And Technologies

 

 

References

S. M. Nikol'skij, Ryad Fur'e funkcij s dannym modulem nepreryvnosti, Dokl. AN SSSR, 52, 191 – 193 (1946).

V. A. YUdin, O module nepreryvnosti v $L_2$, Sib. mat. zhurn., 20, 449 – 450 (1979). DOI: https://doi.org/10.1007/BF00970049

S. V. Konyagin, O modulyah nepreryvnosti funkcij, Tez. dokl. Vsesoyuz. shkoly po teorii funkcij (Kemerovo, 1983) (1983), s. 59.

V. I. Ivanov, O module nepreryvnosti v $L_p$, Mat. zametki, 41, № 5, 682 – 686 (1987).

N. M. Ryzhik, I. S. Gradshtejn, Tablicy integralov, summ, ryadov i proizvedenij, Gostekhteorizdat, Moskva (1951).

Published
04.10.2022
How to Cite
Maksymenkova Y. A., and Michaylova Т. F. “On One Property of the Modulus of Continuity for Periodic Functions of Higher Orders ”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 8, Oct. 2022, pp. 1149 -52, doi:10.37863/umzh.v74i8.7217.
Section
Short communications