Schmidt rank and singularities

  • David Kazhdan Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Israel
  • Amichai Lampert Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Israel and Institute for Advanced Study, Princeton, NJ, USA
  • Alexander Polishchuk Department of Mathematics, University of Oregon, Eugene, USA, National Research University Higher School of Economics and Korea Institute for Advanced Study
Keywords: Schmidt rank, strength of a polynomial, singular locus

Abstract

UDC 512.5

We revisit Schmidt's theorem connecting the Schmidt rank of a tensor with the codimension of a certain variety and adapt the proof to the case of arbitrary characteristic. We also find a sharper result of this kind for homogeneous polynomials, assuming the characteristic does not divide the degree. Further, we use this to relate the Schmidt rank of a homogeneous polynomial (resp., a collection of homogeneous polynomials of the same degree) with the codimension of the singular locus of the corresponding hypersurface (resp., intersection of hypersurfaces). This gives an effective version of Ananyan--Hochster's theorem [J. Amer. Math. Soc., 33, No. 1, 291–309 (2020), Theorem A].

References

K. Adiprasito, D. Kazhdan, T. Ziegler, On the Schmidt and analytic ranks for trilinear forms/em>; arXiv:2102.03659.

T. Ananyan, M. Hochster, Small subalgebras of polynomial rings and Stillman's conjecture, J. Amer. Math. Soc., 33, № 1, 291–309 (2020). DOI: https://doi.org/10.1090/jams/932

T. Ananyan, M. Hochster, Strength conditions, small subalgebras, and Stillman bounds in degree $le 4$, Trans. Amer. Math. Soc., 373, № 7, 4757–4806 (2020). DOI: https://doi.org/10.1090/tran/8060

E. Ballico, A. Bik, A. Oneto, E. Ventura, Strength and slice rank of forms are genericaly equal; arXiv:2102.11549.

E. Ballico, A. Bik, A. Oneto, E. Ventura, The set of forms with bounded strength is not closed; arXiv:2012.01237.

J. M. Boardman, Singularities of differentiable maps, Publ. Math. Inst. Hautes 'Edutes Sci., 33, 383–419 (1967). DOI: https://doi.org/10.1007/BF02684585

A. D. R. Choudary, A. Dimca, On the dual and Hessian mappings of projective hypersurfaces, Math. Proc. Camb. Phil. Soc., 101, 461–468 (1987). DOI: https://doi.org/10.1017/S0305004100066834

H. Derksen, The $G$-stable rank for tensors; arXiv:2002.08435.

D. Kazhdan, T. Ziegler, On the codimension of the singular locus; arXiv:1907.11750.

S. Kopparty, G. Moshkovitz, J. Zuiddam, Geometric rank of tensors and subrank of matrix multiplication; arXiv:2002.09472.

W. M. Schmidt, The density of integer points on homogeneous varieties, Acta Math., 154, № 3-4, 243–296 (1985). DOI: https://doi.org/10.1007/BF02392473

F. Zak, Structure of Gauss maps, Funct. Anal. and Appl., 21, 32–41 (1987). DOI: https://doi.org/10.1007/BF01077983

A. Cohen, G. Moshkovitz, Partition and analytic rank are equivalent over large fields; arXiv:2102.10509.

Published
26.09.2023
How to Cite
KazhdanD., LampertA., and PolishchukA. “Schmidt Rank and Singularities”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, no. 9, Sept. 2023, pp. 1248 -66, doi:10.3842/umzh.v75i9.7227.
Section
Research articles