Smooth rigidity for higher-dimensional contact Anosov flows
Abstract
UDC 515.12
We apply the technique of matching functions in the setting of contact Anosov flows satisfying a bunching assumption. This allows us to generalize the 3-dimensional rigidity result of Feldman and Ornstein [Ergodic Theory Dynam. Syst., 7, No. 1, 49–72 (1987)]. Namely, we show that if two Anosov flow of this kind are $C^0$ conjugate, then they are $C^{r}$ conjugate for some $r\in[1,2)$ or even $C^\infty$ conjugate under certain additional assumptions. This, for example, applies to geodesic flows on compact Riemannian manifolds of $1/4$-pinched negative sectional curvature. We can also use our result to recover Hamendstўаdt's marked length spectrum rigidity result for real hyperbolic manifolds.
References
G. Besson, G. Courtois, S. Gallot, Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geom. and Funct. Anal., 5, 731–799 (1995). DOI: https://doi.org/10.1007/BF01897050
P. Eberlein, Geodesic flows in manifolds of nonpositive curvature, Smooth Ergodic Theory and its Applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI (2001), p. 525–571. DOI: https://doi.org/10.1090/pspum/069/1858545
J. Feldman, D. Ornstein, Semirigidity of horocycle flows over compact surfaces of variable negative curvature,
Ergodic Theory and Dynam. Systems, 7, № 1, 49–72 (1987). DOI: https://doi.org/10.1017/S0143385700003801
P. Foulon, B. Hasselblatt, Contact Anosov flows on hyperbolic 3-manifolds, Geom. Topol., 17, № 2, 1225–1252 (2013). DOI: https://doi.org/10.2140/gt.2013.17.1225
A. Gogolev, F. Rodriguez Hertz, Smooth rigidity for very non-algebraic expanding maps, J. Eur. Math. Soc., 25, № 8, 3289–3323 (2023). DOI: https://doi.org/10.4171/jems/1254
A. Gogolev, F. Rodriguez Hertz, Smooth rigidity for very non-algebraic Anosov diffeomorphisms of codimension one, Israel J. Math. (to appear).
A. Gogolev, F. Rodriguez Hertz, Smooth rigidity for codimension one Anosov flows, Proc. Amer. Math. Soc., 151, № 7, 2975–2988 (2023). DOI: https://doi.org/10.1090/proc/16177
M. Guysinsky, A. Katok, Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations, Math. Res. Lett., 5, 149–163 (1998). DOI: https://doi.org/10.4310/MRL.1998.v5.n2.a2
U. Hamenstädt, Cocycles, symplectic structures and intersection, Geom. and Funct. Anal., 9, № 1, 90–140 (1999). DOI: https://doi.org/10.1007/s000390050082
B. Hasselblatt, Regularity of the Anosov splitting and of horospheric foliations, Ergodic Theory and Dynam. Systems, 14, № 4, 645–666 (1994). DOI: https://doi.org/10.1017/S0143385700008105
B. Hasselblatt, Horospheric foliations and relative pinching, J. Different. Geom., 39, № 1, 57–63 (1994). DOI: https://doi.org/10.4310/jdg/1214454676
J.-L. Journé, A regularity lemma for functions of several variables, Rev. Mat. Iberoam., 2, 187–193 (1988). DOI: https://doi.org/10.4171/rmi/69
B. Kalinin, Non-stationary normal forms for contracting extensions, Vision for Dynamics in the 21st Century: the Legacy of Anatole Katok (to appear).
B. Kalinin, V. Sadovskaya, On Anosov diffeomorphisms with asymptotically conformal periodic data, Ergodic Theory and Dynam. Systems, 29, № 1, 117–136 (2009). DOI: https://doi.org/10.1017/S0143385708000357
A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. and Appl., 54, Cambridge Univ. Press, Cambridge (1995). DOI: https://doi.org/10.1017/CBO9780511809187
Copyright (c) 2023 Andrey Gogolev
This work is licensed under a Creative Commons Attribution 4.0 International License.