Cospectral quantum graphs in the case of Dirichlet conditions at pendant vertices
Abstract
UDC 517.9
We consider spectral problems generated by the Sturm–Liouville equation on connected simple equilateral graphs with Neumann and Dirichlet boundary conditions at the pendant vertices and the conditions of continuity and Kirchhoff's conditions at the inner vertices. We describe the cases where the first and the second terms of the asymptotics of eigenvalues uniquely determine the shape either of the graph or of its interior subgraph.
References
R. Band, O. Parzanchevski, G. Ben-Shach, The isospectral fruits of representation theory: quantum graphs and drums, J. Phys. A: Math. and Theor., 42, Article 175202 (2009); DOI:10.1088/1751-8113/42/17/175202. DOI: https://doi.org/10.1088/1751-8113/42/17/175202
J. Boman, P. Kurasov, R. Suhr, Schrödinger operators on graphs and geometry II. Spectral estimates for $L_1$-potentials and are Ambartsumian theorem, Integral Equat. and Oper. Theory, 90, № 3 (2018); https://doi.org/10.107/s00020-0182467-1. DOI: https://doi.org/10.1007/s00020-018-2467-1
R. Carlson, V. Pivovarchik, Spectral asymptotics for quantum graphs with equal edge lengths, J. Phys. A: Math. and Theor., 41, Article 145202 (2008). DOI: https://doi.org/10.1088/1751-8113/41/14/145202
C. Cattaneo, The spectrum of the continuous Laplacian on a graph, Monatsh. Math., 124, № 3, 215–235 (1997). DOI: https://doi.org/10.1007/BF01298245
A. Chernyshenko, V. Pivovarchik, Recovering the shape of a quantum graph, Integral Equat. and Oper. Theory, 92, Article 23 (2020). DOI: https://doi.org/10.1007/s00020-020-02581-w
A. Chernyshenko, V. Pivovarchik, Cospectral quantum graphs}; arXiv:2112.14235 [math-ph] 23 Mar 22.
L. Collatz, U. Sinogowitz, Spektren endlicher Grafen, Abh. Math. Semin. Univ. Hamburg, 21, 63–77 (1957). DOI: https://doi.org/10.1007/BF02941924
D. M. Cvetkovic', M. Doob, H. Sachs, Spectra of graphs – theory and applications, Acad. Press, New York (1980).
P. Exner, A duality between Schrödinger operators on graphs and certain Jacobi matrices, Ann. Inst. H.~Poincaré, Sec.~A, 66, 359–371 (1997).
Fan R. K. Chung, Spectral graph theory, Amer. Math. Soc., Providence, RI (1997).
S.~Butler, J.~Grout, A construction of cospectral graphs for the normalized Laplacian, Electronic J. Combin., 18, № 1, 1–20 (2011). DOI: https://doi.org/10.37236/718
B. Gutkin, U. Smilansky, Can one hear the shape of a graph?, J. Phys. A: Math. and Gen., 34, 6061–6068 (2001). DOI: https://doi.org/10.1088/0305-4470/34/31/301
P. Kurasov, S. Naboko, Rayleigh estimates for differential operators on graphs, J. Spectr. Theory, 4, № 2, 211–219 (2014). DOI: https://doi.org/10.4171/JST/67
V. A. Marchenko, Sturm–Liouville operators and applications, revised edition, AMS Chelsea Publ., Providence, RI (2011). DOI: https://doi.org/10.1090/chel/373
M. Möller, V. Pivovarchik, Direct and inverse finite-dimensional spectral problems on graphs, Oper. Theory: Adv. and Appl., 283, Birkhäuser/Springer (2020); https://www.springer.com/gp/book/9783030604837. DOI: https://doi.org/10.1007/978-3-030-60484-4
O. Parzanchevski, R. Band, Linear representations and isospectrality with boundary conditions, J. Geom. Anal., 20, 439–471 (2010); DOI 10.1007/s12220-009-9115-6. DOI: https://doi.org/10.1007/s12220-009-9115-6
Yu. Pokorny, O. Penkin, V. Pryadiev, A. Borovskih, K. Lazarev, S. Shabrov, Differential equations on geometric graphs} (in Russian), Fizmatlit, Moscow (2005).
J. von Below, Can one hear the shape of a network, Partial Differential Equations on Multistructures, Lect. Notes Pure and Appl. Math., 219, 19–36 (2001). DOI: https://doi.org/10.1201/9780203902196.ch2
Copyright (c) 2023 Вячеслав Миколайович Пивоварчик
This work is licensed under a Creative Commons Attribution 4.0 International License.