Least-squares method in the theory of nonlinear boundary-value problems unsolved with respect to the derivative

  • P. Benner Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany https://orcid.org/0000-0003-3362-4103
  • S. Chuiko Donbas State Pedagogical Univ., Ukraine, Donetsk region, Sloviansk, and Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany https://orcid.org/0000-0001-7186-0129
  • O. Nesmelova Inst. Appl. Math. and Mech. Nat. Acad. Sci. Ukraine, Donetsk region, Sloviansk
Keywords: Nonlinear boundary-value problem unsolved with respect to the derivative; least squares method; constructive necessary and sufficient conditions; сonvergent iterative schemes

Abstract

UDC 517.9

We establish constructive necessary and sufficient conditions of solvability and a scheme for the construction of  solutions for a nonlinear boundary-value problem unsolved with respect to the derivative.  We also suggest convergent iterative schemes for finding approximate solutions of this problem.  As an example of application of the proposed iterative scheme, we find approximations to the solutions of periodic boundary-value problems for a Rayleigh-type equation unsolved with respect to the derivative, in particular, in the case of a periodic problem for the equation used to describe the motion of satellites on elliptic orbits.

References

A. A. Boichuk, A. M. Samoilenko, Generalized inverse operators and Fredholm boundary-value problems, De Gruyter, Berlin, Boston (2016). DOI: https://doi.org/10.1515/9783110378443

Yu. D. Shlapak, Periodic solutions of nonlinear second-order equations which are not solved for the highest derivative, Ukrainian Math. J., 26, № 6, 850–854 (1974); https://doi.org/10.1007/BF01085271. DOI: https://doi.org/10.1007/BF01085271

A. M. Samoilenko, S. M. Chuiko, O. V. Starkova, Nonlinear boundary-value problem that is not solved with respect to the derivative, Ukrainian Math. J., 72, № 8, 1280–1293 (2021); https://doi.org/10.1007/s11253-020-01852-4. DOI: https://doi.org/10.1007/s11253-020-01852-4

A. P. Torzhevsky, Periodic solutions of the equation of planar oscillations of a satellite in an elliptical orbit, Cosmic Res., 2, № 5, 667–678 (1964) (in Russian).

S. M. Chuiko, O. V. Starkova, O. Ye. Pirus, Nonlinear Noetherian boundary-value problems unsolved with respect to the derivative, Dyn. Syst., 2(30), № 1-2, 169–186 (2012) (in Russian).

S. M. Chuiko, A. S. Chuiko, O. V. Starkova, Periodic boundary value problem of Lienard type unresolved with respect to derivative in critical case, Proc. Inst. Appl. Math. and Mech. NAS Ukraine, 29, 157–171 (2015) (in Russian).

I. G. Malkin, Some problems of the theory of nonlinear vibrations, Gostekhizdat, Moskow (1956) (in Russian).

S. M. Chuiko, A weakly nonlinear boundary-value problem in a particular critical case, Ukrainian Math. J., 61, № 4, 657 (2009); https://doi.org/10.1007/s11253-009-0227-8. DOI: https://doi.org/10.1007/s11253-009-0227-8

N. I. Akhiezer, Lectures on approximation theory, Nauka, Moskow (1965) (in Russian).

S. M. Chuiko, On approximate solution of boundary-value problems by the least square method, Nonlinear Oscillations, 11, № 4, 585–604 (2008); https://doi.org/10.1007/s11072-009-0053-9. DOI: https://doi.org/10.1007/s11072-009-0053-9

G. T. Gilbert, Positive definite matrices and Sylvester's criterion, Amer. Math. Monthly, 98, № 1, 44–46 (1991); https://doi.org/10.1080/00029890.1991.11995702. DOI: https://doi.org/10.1080/00029890.1991.11995702

L. V. Kantorovich, G. P. Akilov, Functional analysis, Nauka, Moskow (1977) (in Russian).

D. K. Lika, Yu. A. Ryabov, Iteration methods and major Lyapunov equations in nonlinear oscillation theory, Stinica, Chisinau (1974) (in Russian).

S. M. Chuiko, Domain of convergence of an iterative procedure for an autonomous boundary-value problem, Nonlinear Oscillations, 9, № 3, 405–422 (2006); https://doi.org/10.1007/s11072-006-0053-y. DOI: https://doi.org/10.1007/s11072-006-0053-y

S. Chuiko, Weakly nonlinear boundary value problem for a matrix differential equation, Miskolc Math. Notes, 17, № 1, 139–150 (2016); https://doi.org/10.18514/MMN.2016.1312. DOI: https://doi.org/10.18514/MMN.2016.1312

S. M. Chuiko, A. S. Chuiko, On the approximate solution of periodic boundary-value problems with delay by the least-squares method in the critical case, Nonlinear Oscillations, 14, № 3, 445–460 (2012); https://doi.org/10.1007/s11072-012-0169-1. DOI: https://doi.org/10.1007/s11072-012-0169-1

S. M. Chuiko, Nonlinear matrix differential-algebraic boundary value problem, Lobachevskii J. Math., 38, 236–244 (2017); https://doi.org/10.1134/S1995080217020056. DOI: https://doi.org/10.1134/S1995080217020056

G. V. Demidenko, S. V. Uspensky, Equations and systems unsolved with respect to the derivative, Nauchnaya Kniga, Novosibirsk (1998) (in Russian).

A. F. Filippov, Uniqueness of the solution of a system of differential equations unsolved for the derivatives, Different. Equat., 41, № 1, 90–95 (2005); https://doi.org/10.1007/s10625-005-0138-x. DOI: https://doi.org/10.1007/s10625-005-0138-x

A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskii, On the well-posedness of differential equations unsolved for the derivative, Different. Equat., 47, № 11, 1541–1555 (2011); https://doi.org/10.1134/S0012266111110012. DOI: https://doi.org/10.1134/S0012266111110012

P. Benner, A. Seidel-Morgenstern, A. Zuyev, Periodic switching strategies for an isoperimetric control problem with application to nonlinear chemical reactions, Appl. Math. Model., 69, 287–300 (2019); https://doi.org/10.1016/ j.apm.2018.12.005. DOI: https://doi.org/10.1016/j.apm.2018.12.005

P. Benner, S. Chuiko, A. Zuyev, A periodic boundary value problem with switchings under nonlinear perturbations, Preprint; https://doi.org/10.21203/rs.3.rs-2239596/v1. DOI: https://doi.org/10.21203/rs.3.rs-2239596/v1

Published
05.02.2023
How to Cite
BennerP., ChuikoS., and NesmelovaO. “Least-Squares Method in the Theory of Nonlinear Boundary-Value Problems Unsolved With Respect to the Derivative”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, no. 1, Feb. 2023, pp. 38 -51, doi:10.37863/umzh.v75i1.7408.
Section
Research articles