Topological entropy, sets of periods, and transitivity for circle maps
Abstract
UDC 517.9
Transitivity, the existence of periodic points, and positive topological entropy can be used to characterize complexity in dynamical systems. It is known that, for every graph that is not a tree and any $\varepsilon>0,$ there exist (complicated) totally transitive maps (then with cofinite set of periods) such that the topological entropy is smaller than $\varepsilon$ (simplicity). To numerically measure the complexity of the set of periods, we introduce a notion of the boundary of cofiniteness. Larger boundary of cofiniteness corresponds to a simpler set of periods. We show that, for any continuous degree one circle maps, every totally transitive (and, hence, robustly complicated) map with small topological entropy has arbitrarily large (simplicity) boundary of cofiniteness.
References
R. L. Adler, A. G. Konheim, M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114, 309–319 (1965). DOI: https://doi.org/10.1090/S0002-9947-1965-0175106-9
Ll. Alsedà, L. Bordignon, J. Groisman, Topological entropy, sets of periods and transitivity for graph maps: a factory of examples, Preprint (2023).
Ll. Alsedà, M. A. del Río, J. A. Rodríguez, A splitting theorem for transitive maps, J. Math. Anal. and Appl., 232, № 2, 359–375 (1999). DOI: https://doi.org/10.1006/jmaa.1999.6277
Ll. Alsedà, M. A. del Río, J. A. Rodríguez, A note on the totally transitive graph maps, Int. J. Bifur. and Chaos Appl. Sci. Engrg., 11, № 3, 841–843 (2001). DOI: https://doi.org/10.1142/S0218127401002365
Ll. Alsedà, M. A. Del Río, J. A. Rodríguez, A survey on the relation between transitivity and dense periodicity for graph maps, J. Difference Equat. and Appl., 9, № 3-4, 281–288 (2003). DOI: https://doi.org/10.1080/1023619021000047725
Ll. Alsedà, M. A. del Río, J. A. Rodríguez, Transitivity and dense periodicity for graph maps, J. Difference Equat. and Appl., 9, № 6, 577–598 (2003). DOI: https://doi.org/10.1080/1023619021000040515
Ll. Alsedà, F. Ma {n}osas, P. Mumbrú, Minimizing topological entropy for continuous maps on graphs, Ergodic Theory and Dynam. Systems, 20, № 6, 1559–1576 (2000). DOI: https://doi.org/10.1017/S0143385700000857
Ll. Alsedà, S. Baldwin, J. Llibre, M. Misiurewicz, Entropy of transitive tree maps, Topology, 36, № 2, 519–532 (1997). DOI: https://doi.org/10.1016/0040-9383(95)00070-4
Ll. Alsedà, J. Llibre, M. Misiurewicz, Combinatorial dynamics and entropy in dimension one, second ed., Ser. Nonlinear Dynam., vol. 5, World Sci. Publ. Co., Inc., River Edge, NJ (2000). DOI: https://doi.org/10.1142/4205
Ll. Alsedà, S. Ruette, Periodic orbits of large diameter for circle maps, Proc. Amer. Math. Soc., 138, № 9, 3211–3217 (2010). DOI: https://doi.org/10.1090/S0002-9939-10-10332-3
J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly, 99, № 4, 332–334 (1992). DOI: https://doi.org/10.1080/00029890.1992.11995856
A. M. Blokh, On transitive mappings of one-dimensional branched manifolds, Differential-difference Equations and Problems of Mathematical Physics (in Russian), Akad. Nauk Ukr. SSR, Inst. Mat., Kiev (1984), p. 3–9.
A. M. Blokh, The connection between entropy and transitivity for one-dimensional mappings, Uspekhi Mat. Nauk, 42, № 5, 209–210 (1987). DOI: https://doi.org/10.1070/RM1987v042n05ABEH001474
R. Ito, Rotation sets are closed, Math. Proc. Cambridge Phil. Soc., 89, № 1, 107–111 (1981). DOI: https://doi.org/10.1017/S0305004100057984
S. Kolyada, L. Snoha, Some aspects of topological transitivity – a survey, Iteration Theory (ECIT 94) (Opava), Grazer Math. Ber., vol. 334, Karl-Franzens-Univ. Graz (1997), p. 3–35.
M. Misiurewicz, Periodic points of maps of degree one of a circle, Ergodic Theory and Dynam. Systems, 2, № 2, 221–227 (1983). DOI: https://doi.org/10.1017/S014338570000153X
Copyright (c) 2024 Lluis Alseda, Liane Bordignon, Jorge Groisman
This work is licensed under a Creative Commons Attribution 4.0 International License.