Hermite–Hadamard-type inequalities for multiplicative harmonic $s$-convex functions
Abstract
UDC 517.5
We study the concept of multiplicative harmonic $s$-convex functions and establish Hermite–Hadamard integral inequalities for this class of functions. Furthermore, we derive a set of Hermite–Hadamard-type inequalities applicable to the product and quotient of multiplicative harmonic $s$-convex functions. In addition, we deduce new inequalities involving multiplicative integrals for the product and quotient of harmonic convex and multiplicative harmonic $s$-convex functions. Some results for the class of multiplicative harmonic convex functions are obtained as special cases of our results. The obtained results are verified by providing examples with included graphs.
References
P. Agarwal, S. S. Dragomir, M. Jleli, B. Samet (eds.), Advances in mathematical inequalities and applications, Springer, Singapore (2018). DOI: https://doi.org/10.1007/978-981-13-3013-1
M. A. Ali, M. Abbas, A. A. Zafer, On some Hermite–Hadamard integral inequalities in multiplicative calculus, J. Inequal. Spec. Funct., 10, № 1, 111–122 (2019).
M. A. Ali, M. Abbas, Z. Zhang, I. B. Sial, R. Arif, On integral inequalities for product and quotient of two multiplicatively convex functions, Asian Res. J. Math., 12, № 3, 1–11 (2019). DOI: https://doi.org/10.9734/arjom/2019/v12i330084
M. U. Awan, M. A. Noor, K. I. Noor, Some integral inequalities for harmonically logarithmic $h$-convex functions, Sohag J. Math., 5, № 2, 57–62 (2018). DOI: https://doi.org/10.18576/sjm/050203
A. E. Bashirov, E. M. Kurpınar, A. Özyapıcı, Multiplicative calculus and applications, J. Math. Anal. and Appl., 337, № 1, 36–48 (2008). DOI: https://doi.org/10.1016/j.jmaa.2007.03.081
A. E. Bashirov, E. Kurpınar, Y. Tando, A. Özyapıcı, On modeling with multiplicative differential equations, Appl. Math., 26, № 4, 425–438 (2011). DOI: https://doi.org/10.1007/s11766-011-2767-6
S. I. Butt, J. Pečarić, I. Perić, Refinement of integral inequalities for monotone functions, J. Inequal. and Appl., 2012, № 1, 1–11 (2012). DOI: https://doi.org/10.1186/1029-242X-2012-301
T. Rasheed, S. I. Butt, D. Pečarić, J. Pečarić, Generalized cyclic Jensen and information inequalities, Chaos, Solitons & Fractals, 163, Article 112602 (2022). DOI: https://doi.org/10.1016/j.chaos.2022.112602
S. I. Butt, J. Pečarić, A. Vukelić, Generalization of Popoviciu type inequalities via Fink's identity, Mediterr. J. Math., 13, № 4, 1495–1511 (2016). DOI: https://doi.org/10.1007/s00009-015-0573-8
S. I. Butt, H. Budak, M. Tariq, M. Nadeem, Integral inequalities for $n$-polynomial $s$-type preinvex functions with applications, Math. Methods Appl. Sci., 44, № 14, 11006–11021 (2021). DOI: https://doi.org/10.1002/mma.7465
S. I. Butt, J. Pečarić, Popoviciu's inequality for $n$-convex functions, Lap Lambert Acad. Publ. (2016).
S. I. Butt, J. Pečarić, Generalized Hermite–Hadamard's inequality, Proc. A. Razmadze Math. Inst., 163, 9–27 (2013).
S. I. Butt, M. Tariq, A. Aslam, H. Ahmad, T. A. Nofal, Hermite–Hadamard type inequalities via generalized harmonic exponential convexity and applications, J. Funct. Spaces (2021). DOI: https://doi.org/10.1155/2021/5533491
S. I. Butt, A. O. Akdemir, M. Nadeem, N. Mlaiki, Í. Íşcan, T. Abdeljawad, $ (m,n)$-Harmonically polynomial convex functions and some Hadamard type inequalities on the coordinates, AIMS Math., 6, № 5, 4677–4691 (2021).
S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite–Hadamard inequalities and applications, RGMIA Monographs, Victoria University (2000).
S. S. Dragomir, S. Fitzpatrick, The Hadamard inequalities for $s$-convex functions in the second sense, Demonstr. Math., 32, № 4, 687–696 (1999). DOI: https://doi.org/10.1515/dema-1999-0403
S. S. Dragomir, C. E. M. Pearce, Quasi-convex functions and Hermite–Hadamard's inequality, Bull. Aust. Math. Soc., 57, 377–385 (1998). DOI: https://doi.org/10.1017/S0004972700031786
M. Grossman, R. Katz, Non-Newtonian calculus, Lee Press, Pigeon Cove, MA (1972).
H. Hudzik, L. Maligranda, Some remarks on $s$-convex functions, Aequationes Math., 48, 100–111 (1994). DOI: https://doi.org/10.1007/BF01837981
Í. Íşcan, Hermite–Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43, № 6, 935–942 (2014). DOI: https://doi.org/10.15672/HJMS.2014437519
H. Kadakal, Multiplicatively $P$-functions and some new inequalities, New Trends Math. Sci., 6, № 4, 111–118 (2018). DOI: https://doi.org/10.20852/ntmsci.2018.321
M. A. Noor, K. I. Noor, M. U. Awan, Some characterizations of harmonically $log$-convex functions, Proc. Jangjeon Math. Soc., 17, № 1, 51–61 (2014).
M. A. Noor, K. I. Noor, M. U. Awan, S. Costache, Some integral inequalities for harmonically $h$-convex functions, U.P.B. Sci. Bull., Ser. A, 77, № 1, 5–16 (2015).
S. Özcan, Í. Íşcan, Some new Hermite–Hadamard type inequalities for $s$-convex functions and their applications, J. Inequal. and Appl., Article 201 (2019). DOI: https://doi.org/10.1186/s13660-019-2151-2
S. Özcan, Some integral inequalities for harmonically $ (alpha,s)$-convex functions, J. Funct. Spaces, 2019, Article ID 2394021 (2019). DOI: https://doi.org/10.1155/2019/2394021
S. Özcan, Hermite–Hadamard type inequalities for $m$-convex and $ (alpha, m)$-convex functions, J. Inequal. and Appl., Article 175 (2020).
S. Özcan, Hermite–Hadamard type inequalities for multiplicatively $h$-convex functions, Konuralp J. Math., 8, № 1, 158–164 (2020). DOI: https://doi.org/10.1186/s13660-020-02442-5
S. Özcan, Hermite–Hadamard type inequalities for multiplicatively $h$-preinvex functions, Turkish J. Anal. Number Theory, 9, № 3, 65–70 (2020). DOI: https://doi.org/10.12691/tjant-9-3-5
S. Özcan, On refinements of some integral inequalities for differentiable prequasiinvex functions, Filomat, 33, № 14, 4377–4385 (2019). DOI: https://doi.org/10.2298/FIL1914377O
A. Özyapıcı, E. Misirli, Exponential approximation on multiplicative calculus, 6th ISAAC Congress (2007).
J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings and statistical applications, Academic Press, Boston (1992).
Y. Qin, Integral and discrete inequalities and their applications, Birkhäuser, Springer International Publishing, Switzerland (2016); DOI.org/10.1007/978-3-319-33301-4.
M. Riza, A. Özyapıcı, E. Kurpınar, Multiplicative finite difference methods, Quart. Appl. Math., 67, № 4, 745–754 (2009). DOI: https://doi.org/10.1090/S0033-569X-09-01158-2
V. Volterra, B. Hostinsky, Operations infinitesimales lineaires, Gauthier-Villars, Paris (1938).
Copyright (c) 2024 Serap Özcan
This work is licensed under a Creative Commons Attribution 4.0 International License.