Laguerre–Cayley functions and related polynomials

  • V. Makarov Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv
  • S. Makarov National Center "Small Academy of Sciences of Ukraine", Kyiv


UDC 517.587

We investigate the main properties of Laguerre–Cayley functions and related polynomials, which can be regarded as an essential component of  mathematical apparatus of the functional-discrete (FD-) method for solving the Cauchy problem for an abstract homogeneous evolutionary equation of  fractional order.


W. Mclean, V. Thomée, Numerical solution via Laplace transforms of a fractional order evolution equation, J. Integral Equations and Appl., 22, № 1, 57–94 (2010);

В. Б. Василик, I. П. Гаврилюк, В. Л. Макаров, Експоненціально збіжний метод наближення для рівняння з дробовою похідною і необмеженим операторним коефіцієнтом в банаховому просторі, Укр. мат. журн., 74, № 2, 151–163 (2022);

K. Tran, A. Zumba, Zeros of polynomials with four-term recurrence, Involve, 11, № 3, 501–518 (2018); 10.2140/involve.2018.11.501.

R. Adams, On hyperbolic polynomials with four-term recurrence and linear coefficients, Calcolo, 57, Article 22 (2020);

K. Tran, A. Zumba, Zeros of polynomials with four-term recurrence and linear coefficients, Ramanujan J., 55, 447–470 (2021);

Г. Сегe, Ортогональные полиномы, Физматлит, Москва (1962).

N. J. A. Sloane, S. Plouffe (Ed.), The encyclopedia of integer sequences, Academic Press, San Diego (1995).

X. Xie, A new method of investigating the stability of linear systems, Meeting report in Beijing, 1957 (in Chinese).

N. Levinson, R. M. Redheffer, Complex variables, eBook, Holden-Day, San Francisco (1970).

How to Cite
Makarov, V., and S. Makarov. “Laguerre–Cayley Functions and Related Polynomials”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 3, Mar. 2024, pp. 423 -1, doi:10.3842/umzh.v76i3.7810.
Research articles