Strong measurable continuous modifications of stochastic flows

  • Olivier Raimond MODAL'X, Université Paris Nanterre, France
  • Georgii Riabov Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv
Keywords: stochastic flows, coalescing flows, metric graphs

Abstract

UDC 519.21

We consider stochastic flows of measurable mappings in a locally compact separable metric space $(M,\rho)$ and  propose a new construction that produces strong measurable continuous modifications for certain stochastic flows of measurable mappings in metric graphs.

References

M. Barlow, J. Pitman, M. Yor, On Walsh’s Brownian motions, Séminaire de probabilités XXIII, Lect. Notes Math., 1372, 275–293 (1989).

K. Burdzy, H. Kaspi, Lenses in skew Brownian flow, Ann. Probab., 32, № 4, 3085–3115 (2004); DOI: 10.1214/ 009117904000000711.

R. W. R. Darling, Constructing nonhomeomorphic stochastic flows, Mem. Amer. Math. Soc., vol. 376, Amer. Math. Soc., Providence, RI (1987); DOI: 10.1090/memo/0376.

J. Dieudonné, Foundations of modern analysis, Pure and Appl. Math., vol. 10, Academic Press, New York (1960).

A. Dvoretzky, P. Erdős, S. Kakutani, Nonincrease everywhere of the Brownian motion process, Proc. 4th Berkeley Symp. Math. Stat. and Probab., 2, 103–116 (1961).

S. N. Ethier, T. G. Kurtz, Markov processes. Characterization and convergence, John Wiley & Sons, Hoboken, NJ (2005).

S. N. Evans, B. Morris, A. Sen, Coalescing systems of non-Brownian particles, Probab. Theory and Relat. Fields, 156, № 1-2, 307–342 (2013); DOI: 10.1007/s00440-012-0429-0.

M. I. Freidlin, A. D. Wentzell, Diffusion processes on graphs and the averaging principle, Ann. Probab., 21, № 4, 2215–2245 (1993); DOI: 10.1214/aop/1176989018.

H. Hajri, Stochastic flows related to Walsh Brownian motion, Electron. J. Probab., 16, Article 58, 1563–1599 (2011);

DOI: 10.1214/EJP.v16-924.

H. Hajri, O. Raimond, Stochastic flows on metric graphs, Electron. J. Probab., 19, Article~12, 1–20 (2014).

H. Hajri, O. Raimond, Stochastic flows and an interface SDE on metric graphs, Stochastic Process. and Appl., 126, № 1, 33–65 (2016).

J. M. Harrison, L. A. Shepp, On skew Brownian motion, Ann. Probab., 9, 309–313 (1981); DOI: 10.1214/aop/ 1176994472.

H. Kunita, Stochastic flows and stochastic differential equations, Cambridge Stud. Adv. Math., vol. 24, Cambridge Univ. Press, Cambridge (1997).

Y. Le Jan, O. Raimond, Flows, coalescence and noise, Ann. Probab., 32, № 2, 1247–1315 (2004).

Y. Le Jan, O. Raimond, Flows associated to Tanaka’s SDE, ALEA, Lat. Amer. J. Probab. Math. Stat., 1, 21–34 (2006).

Y. Le Jan, O. Raimond, Three examples of Brownian flows on $R$, Ann. Inst. Henri Poincaré, Probab. Stat., 50, № 4, 1323–1346 (2014).

Y. Le Jan, O. Raimond, Correction to ``Flows, coalescence and noise'', Ann. Probab., 48, № 3, 1592–1595 (2020).

D. Ray, Sojourn times of diffusion processes, Illinois J. Math., 7, 615–630 (1963).

D. Revuz, M. Yor, Continuous martingales and Brownian motion, 3rd ed., 3rd. corrected printing, Grundlehren Math. Wiss, vol. 293, Springer, Berlin (2005).

G. V. Riabov, Random dynamical systems generated by coalescing stochastic flows on $R$, Stoch. Dyn., 18, № 4, Article~1850031 (2018).

E. Schertzer, R. Sun, J. M. Swart, Stochastic flows in the Brownian web and net, Mem. Amer. Math. Soc., vol. 1065, Amer. Math. Soc., Providence, RI (2014); DOI: 10.1090/S0065-9266-2013-00687-9.

S. M. Srivastava, A course on Borel sets, Grad. Texts Math., vol. 180, Springer, New York (1998).

H. Tanaka, Some theorems concerning extrema of Brownian motion with $d$-dimensional time, Osaka J. Math., 38, № 2, 369–377(2001).

Published
30.11.2023
How to Cite
Raimond, O., and G. Riabov. “Strong Measurable Continuous Modifications of Stochastic Flows”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, no. 11, Nov. 2023, pp. 1522 -51, doi:10.3842/umzh.v75i11.7875.
Section
Research articles