On oscilation and asymptotic behaviour of solutions of one system of differential-functional equations of neutral type
Abstract
Conditions for the oscillation of all solutions and for the existence of nonoscillatory solutions with polynomial growth at infinity are given for the system of differential-functional equations of neutral type
\(\frac{{d^n }}{{dt^n }}[x(t) + \lambda _1 x(t - \tau _1 )] = p(t)f(y(\theta _1 (f)), \\ \frac{{d^n }}{{dt^n }}[y(t) + \lambda _2 y(t - \tau _2 )]q = (t)g(x(\theta _2 (t)), \\ 0 \leqslant |\lambda _1 |,|\lambda _2 |< 1. \)
References
Иванов А. Ф., Кусано Т. Колеблемость решений одного класса функционально-дифференциальных уравнений первого порядка нейтрального типа // Укр. мат. журн.— 1989.— 41, № 10.—С. 1370—1375.
Marusiak Р. Oscillation of solutions of nonlinear delay differential equations // Mat. Cas.— 1974.— N 4.— P. 371—380.
Kuan J. Types and criteria of nonoscillatory solutions for second order linear neutral differential diiference equations//Chin. Ann. Math. Ser, A.— 1987.— 8.— P. 114—124.
Copyright (c) 1992 A. F. Ivanov , P. Marushiyak
This work is licensed under a Creative Commons Attribution 4.0 International License.