The Local spectral theory and surjective spectrum of linear relations
Abstract
UDC 517.98
This paper initiates a study of local spectral theory for linear relations. At the beginning, we define the local spectrum and study its properties. Then we obtain results related to the correlation analytic core $K\prime (T)$ and quasinilpotent part $H_0(T)$ of a linear relation $T$ in a Banach space $X$. As an application, we give a characterization of the surjective spectrum $\sigma_{su}(T)$ in terms of the local spectrum and show that if $X = H_0(\lambda I - T) + K\prime (\lambda I - T)$, then $\sigma_{su}(T)$ does not cluster at $\lambda$.
References
P. Aiena, Fredholm and local spectral theory, with applications to multipliers, Kluwer Acad. Publ. (2004).
P. Aiena, Fredholm theory and localized SVEP, Funct. Anal., Approxim. and Comput., 7, № 2, 9 – 58 (2015).
E. Chafai, Ascent, descent and some perturbation results for linear relation: Doctor. Thesis, Univ. Sfax (2013).
E. Chafai, M. Mnif, Perturbation of normally solvable linear relations in paracomplete space, Linear Algebra and Appl., 439, 1875 – 1885 (2013), https://doi.org/10.1016/j.laa.2013.05.019 DOI: https://doi.org/10.1016/j.laa.2013.05.019
R. W. Cross, Multivalued linear operators, Marcel Dekker, New York (1998).
N. Dunford, Spectral theory II. Resolution of the identity, Pacif. J. Math., 2, 559 – 614 (1952). DOI: https://doi.org/10.2140/pjm.1952.2.559
N. Dunford, Spectral operators, Pacific J. Math., 4, 321 – 354 (1954). DOI: https://doi.org/10.2140/pjm.1954.4.321
K. B. Laursen, M. M. Neuman, An introduction to local spectral theory, London Math. Soc.Monogr. 20, Clarendon Press, Oxford (2000).
Copyright (c) 2021 Maher Mnif, Aman-Allah Ouled-Hmed
This work is licensed under a Creative Commons Attribution 4.0 International License.