The Local spectral theory and surjective spectrum of linear relations

Authors

DOI:

https://doi.org/10.37863/umzh.v73i2.81

Keywords:

Linear relations, local spectrum, surjective spectrum, correlation analytic core, local and glocal spectral subspaces

Abstract

UDC 517.98

This paper initiates a study of local spectral theory for linear relations. At the beginning, we define the local spectrum and study its properties. Then we obtain results related to the correlation analytic core $K\prime (T)$ and quasinilpotent part $H_0(T)$ of a linear relation $T$ in a Banach space $X$. As an application, we give a characterization of the surjective spectrum $\sigma_{su}(T)$ in terms of the local spectrum and show that if $X = H_0(\lambda I - T) + K\prime (\lambda I - T)$, then $\sigma_{su}(T)$ does not cluster at $\lambda$.

References

P. Aiena, Fredholm and local spectral theory, with applications to multipliers, Kluwer Acad. Publ. (2004).

P. Aiena, Fredholm theory and localized SVEP, Funct. Anal., Approxim. and Comput., 7, № 2, 9 – 58 (2015).

E. Chafai, Ascent, descent and some perturbation results for linear relation: Doctor. Thesis, Univ. Sfax (2013).

E. Chafai, M. Mnif, Perturbation of normally solvable linear relations in paracomplete space, Linear Algebra and Appl., 439, 1875 – 1885 (2013), https://doi.org/10.1016/j.laa.2013.05.019 DOI: https://doi.org/10.1016/j.laa.2013.05.019

R. W. Cross, Multivalued linear operators, Marcel Dekker, New York (1998).

N. Dunford, Spectral theory II. Resolution of the identity, Pacif. J. Math., 2, 559 – 614 (1952). DOI: https://doi.org/10.2140/pjm.1952.2.559

N. Dunford, Spectral operators, Pacific J. Math., 4, 321 – 354 (1954). DOI: https://doi.org/10.2140/pjm.1954.4.321

K. B. Laursen, M. M. Neuman, An introduction to local spectral theory, London Math. Soc.Monogr. 20, Clarendon Press, Oxford (2000).

Downloads

Published

22.02.2021

Issue

Section

Research articles

How to Cite

Mnif, M., and A.-A. Ouled-Hmed. “The Local Spectral Theory and Surjective Spectrum of Linear Relations”. Ukrains’kyi Matematychnyi Zhurnal, vol. 73, no. 2, Feb. 2021, pp. 222-37, https://doi.org/10.37863/umzh.v73i2.81.