Remark to the evaluation of the distribution norm of white noise

Authors

  • Yu. G. Kondratiev Inst. Math. Acad. Sci. Ukraine, Kiev
  • L. Streit Univ Bielefeld, Germany

Keywords:

-

Abstract

The description of the space (S) of white noise distributions is received in the terms of the S-transform well-known in the white noise analysis.

References

Hida T. Brownian motion.— Berlin etc.: Springer, 1980.— 304 p.

Potthoff J., Streit L. A characterization of Hida distributions.— BiBoS, 1989.— (Preprint / Univ. Bielefeld; 406).

Hida T., Potthoff J., Streit L. White noise : An infinite dimensional calculus.— (To appear).

Кондратьев Ю. Г. Ядерные пространства целых функций в задачах бесконечномерного анализа // Докл. АН СССР.— 1980.— 254, № 6.— С. 1325—1329.

Березанский Ю. М., Кондратьев Ю. Г. Спектральные методы в бесконечномерном анализе.— Киев : Наук, думка, 1988.— 680 с.

Lee Y.-J. A characterization of generalized functions of infinite-dimensional spaces and Bargmann — Segal analytic functions//Proc. conf. Gaussian Random Fields (Nagoya, Japan, 1990).— (To appear).

Nachbin L. Topologies on spaces of holomorphic mappings.— Berlin etc.: Springer, 1969.— 230 p.

Potthoff J., Streit L. Generalized Radom — Nikodim derivaties and Cameron — Martin theory // Proc. conf. Gaussian Random Fields (Nagoya, Japan, 1990).— (To appear).

Yan J.-A. A characterization of white noise functional.— BiBoS, 1991.— (Preprint/ Univ. Bielefeld).— (To appear).

Downloads

Published

03.08.1992

Issue

Section

Research articles

How to Cite

Kondratiev , Yu. G., and L. Streit. “Remark to the Evaluation of the Distribution Norm of White Noise ”. Ukrains’kyi Matematychnyi Zhurnal, vol. 44, no. 7, Aug. 1992, pp. 922-6, https://umj.imath.kiev.ua/index.php/umj/article/view/8124.