Remark to the evaluation of the distribution norm of white noise

  • Yu. G. Kondratiev Inst. Math. Acad. Sci. Ukraine, Kiev
  • L. Streit Univ Bielefeld, Germany
Keywords: -

Abstract

The description of the space $(S)*$ of white noise distributions is received in the terms of the $S$-transform well-known in the white noise analysis.

References

Hida T. Brownian motion.— Berlin etc.: Springer, 1980.— 304 p.

Potthoff J., Streit L. A characterization of Hida distributions.— BiBoS, 1989.— (Preprint / Univ. Bielefeld; 406).

Hida T., Potthoff J., Streit L. White noise : An infinite dimensional calculus.— (To appear).

Кондратьев Ю. Г. Ядерные пространства целых функций в задачах бесконечномерного анализа // Докл. АН СССР.— 1980.— 254, № 6.— С. 1325—1329.

Березанский Ю. М., Кондратьев Ю. Г. Спектральные методы в бесконечномерном анализе.— Киев : Наук, думка, 1988.— 680 с.

Lee Y.-J. A characterization of generalized functions of infinite-dimensional spaces and Bargmann — Segal analytic functions//Proc. conf. Gaussian Random Fields (Nagoya, Japan, 1990).— (To appear).

Nachbin L. Topologies on spaces of holomorphic mappings.— Berlin etc.: Springer, 1969.— 230 p.

Potthoff J., Streit L. Generalized Radom — Nikodim derivaties and Cameron — Martin theory // Proc. conf. Gaussian Random Fields (Nagoya, Japan, 1990).— (To appear).

Yan J.-A. A characterization of white noise functional.— BiBoS, 1991.— (Preprint/ Univ. Bielefeld).— (To appear).

Published
03.08.1992
How to Cite
Kondratiev Y. G., and Streit L. “Remark to the Evaluation of the Distribution Norm of White Noise ”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 44, no. 7, Aug. 1992, pp. 922-6, https://umj.imath.kiev.ua/index.php/umj/article/view/8124.
Section
Research articles