Quantum algebras, q-polynomials of Kravchuk and q-functions of Kravchuk-Meixner
Keywords:
-Abstract
Addition and multiplication theorems are proved for Kravchuk q-polynomials by means of methods from the theory of representations of the quantum algebras Uq(su2) and Uq(su1,1), and Kravchuk-Meixner q-functions are introduced and are shown to be orthogonal on the set of integers.
References
Noumi М., Mimachi К. Askey-Wilson Polynomials and the Quantum Group SUq(2) // Proc. Jap. Acad. A.— 1990.— 66.— P. 146—149.
Koornuinder T. H. Representations of the twisted SU(2) quantum group and some q-hypergeometric orthogonal polynomials // Proc. Nederl. Acad. Wetenson. A.— 1989.— 92.— P. 97—117.
Hahn W. Uber Orthogonal Polynome, die q-Differenzengleichungen genflgen // Math.
Nachr.— 1949.— 2.— S. 4—34.
Groza V. A., Kachurik I. I., Klimyk A. U. On Clebsch-Gordan coefficients and matrix elements of representations of the quantum algebra Uq(su2) // J. Math. Phys.— 1990.— 31, N 12.— P. 2769—2780.
Andrews G. E., Askey R. Classical orthogonal polynomials// Leet. Notes Math.— 1985.— 1171.— P. 36—62.
Гроза В. А. Представления квантовой алгебры Uq(su1,1) и базисные гипергеометрические функции.— Киев, 1990.— 20 с.— (Препринт/ АН УССР. Ин-т теорет. физики, ИТФ-90-56Р).
Unitary representations of the quantum group SUq(1,1): II-Matrix elements of unitary representations and the basic hypergeometric functions/ T. Masuda, K. Mimachi, Y. Naka-gami etc.// Lett. Math. Phys.— 1990.— 19, P. 195—204.