Quantum algebras, q-polynomials of Kravchuk and q-functions of Kravchuk-Meixner

  • V. A. Groza Київ. геофіз. від-ня УкрНДГРІ

Abstract

Addition and multiplication theorems are proved for Kravchuk q-polynomials by means of methods from the theory of representations of the quantum algebras $U_q (su_2)$ and $U_q(su_{1,1})$, and Kravchuk-Meixner $q$-functions are introduced and are shown to be orthogonal on the set of integers.

References

Noumi М., Mimachi К. Askey-Wilson Polynomials and the Quantum Group $SU_q(2)$ // Proc. Jap. Acad. A.— 1990.— 66.— P. 146—149.

Koornuinder T. H. Representations of the twisted $SU (2)$ quantum group and some $q$-hypergeometric orthogonal polynomials // Proc. Nederl. Acad. Wetenson. A.— 1989.— 92.— P. 97—117.

Hahn W. Uber Orthogonal Polynome, die $q$-Differenzengleichungen genflgen // Math.

Nachr.— 1949.— 2.— S. 4—34.

Groza V. A., Kachurik I. I., Klimyk A. U. On Clebsch-Gordan coefficients and matrix elements of representations of the quantum algebra $U_q(su_2)$ // J. Math. Phys.— 1990.— 31, N 12.— P. 2769—2780.

Andrews G. E., Askey R. Classical orthogonal polynomials// Leet. Notes Math.— 1985.— 1171.— P. 36—62.

Гроза В. А. Представления квантовой алгебры $U_q(su_{1,1})$ и базисные гипергеометрические функции.— Киев, 1990.— 20 с.— (Препринт/ АН УССР. Ин-т теорет. физики, ИТФ-90-56Р).

Unitary representations of the quantum group $SU_q(1,1)$: II-Matrix elements of unitary representations and the basic hypergeometric functions/ T. Masuda, K. Mimachi, Y. Naka-gami etc.// Lett. Math. Phys.— 1990.— 19, P. 195—204.

Published
03.08.1992
How to Cite
Groza V. A. “Quantum Algebras, Q-Polynomials of Kravchuk and Q-Functions of Kravchuk-Meixner ”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 44, no. 7, Aug. 1992, pp. 983-6, https://umj.imath.kiev.ua/index.php/umj/article/view/8130.
Section
Short communications