Behavior of subharmonic functions of slow growth outside exclusive sets

Authors

  • M. Zabolotskyy Lviv Ivan Franko National University
  • T. Zabolotskyy Lviv Ivan Franko National University

DOI:

https://doi.org/10.3842/umzh.v76i7.8157

Keywords:

субгармонійна функція, повільно зростаюча функція.

Abstract

UDC517.53

Let v be a slowly growing function unbounded on [0,+), u be subharmonic (in plane) function of zero order, μ~be its Riesz measure, n(t,u)=μ({x:|x|t}), N(t,u)=t1n(τ,u)/τdτ, and n(r,u)=O(v(r)), r+.  A  set EC is called a Cβ0-set, 0<β1, if E can be covered by a system of disks K(an,rn)={z:|zan|<rn} such that |an|rrβn=o(rβ), r+. Then, for every nondecreasing function  ϕ unbounded on [0,+),  there exists a Cβ0-set E such that u(z)=N(r,u)+o(ϕ(r)v(r)),r=|z|+,zE. It is shown that, in this asymptotic formula, the remainder term o(ϕ(r)v(r)) cannot be changed by O(v(r)).

References

A. A. Goldberg, I. V. Ostrovskii, Value distributions of meromorphic functions, Amer. Math. Soc., Providence, RI (2008).

E. Seneta, Regularly varying functions, Springer-Verlag, Berlin etc. (1976). DOI: https://doi.org/10.1007/BFb0079658

A. A. Goldberg, M. V. Zabolotskyy, Concentration index of a subharmonic function of zeroth order, Math. Notes, 34, № 1-2, 596–601 (1983). DOI: https://doi.org/10.1007/BF01141775

N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, Berlin etc. (1972). DOI: https://doi.org/10.1007/978-3-642-65183-0

Published

04.08.2024

Issue

Section

Research articles

How to Cite

Zabolotskyy, M., and T. Zabolotskyy. “Behavior of Subharmonic Functions of Slow Growth Outside Exclusive Sets”. Ukrains’kyi Matematychnyi Zhurnal, vol. 76, no. 7, Aug. 2024, pp. 986-91, https://doi.org/10.3842/umzh.v76i7.8157.