Behavior of subharmonic functions of slow growth outside exclusive sets

  • M. Zabolotskyy Lviv Ivan Franko National University
  • T. Zabolotskyy Lviv Ivan Franko National University

Abstract

UDC517.53

Let $v$ be a slowly growing function unbounded on $[0,\,+\infty),$ $u$ be subharmonic (in plane) function of zero order, $\mu$~be its Riesz measure, $n(t,u)=\mu(\{x\colon |x|\le t\}),$ $N(t,u)=\int_{1}^{t}n(\tau,u)/\tau d\tau,$ and $n(r,u)=O(v(r)),$ $r\to+\infty.$  A  set $E \in \mathbb{C}$ is called a $C_0^\beta$-set, $0 < \beta \le 1,$ if $E$ can be covered by a system of disks $K(a_n,r_n)=\{z\colon |z-a_n| < r_n\}$ such that $\sum_{|a_n| \le r} r_n^\beta = o(r^\beta),$ $r\to+\infty.$ Then, for every nondecreasing function  $\phi$ unbounded on $[0,\,+\infty),$  there exists a $C_0^\beta$-set $E$ such that \begin{equation*}u(z)=N(r,u)+o(\phi(r)v(r)),\qquad r=|z|\to+\infty,\quad z \notin E.\end{equation*} It is shown that, in this asymptotic formula, the remainder term $o(\phi(r)v(r))$ cannot be changed by $O(v(r)).$

References

A. A. Goldberg, I. V. Ostrovskii, Value distributions of meromorphic functions, Amer. Math. Soc., Providence, RI (2008).

E. Seneta, Regularly varying functions, Springer-Verlag, Berlin etc. (1976). DOI: https://doi.org/10.1007/BFb0079658

A. A. Goldberg, M. V. Zabolotskyy, Concentration index of a subharmonic function of zeroth order, Math. Notes, 34, № 1-2, 596–601 (1983). DOI: https://doi.org/10.1007/BF01141775

N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, Berlin etc. (1972). DOI: https://doi.org/10.1007/978-3-642-65183-0

Published
04.08.2024
How to Cite
Zabolotskyy, M., and T. Zabolotskyy. “Behavior of Subharmonic Functions of Slow Growth Outside Exclusive Sets”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 7, Aug. 2024, pp. 986 -91, doi:10.3842/umzh.v76i7.8157.
Section
Research articles