On the estimates of the rate of propagation of perturbations in quasilinear divergent degenerated parabolic equations of the high order
Abstract
A method is given for obtaining integral growth lemmas for solutions of boundary problems for a large class of quasilinear evolution equations. As a possible application a sharp estimate is obtained of the dependence of the support of a solution of a mixed problem and a Cauchy problem for a quasilinear divergent parabolic equation on time.
References
Акулов В.Ф., Шишков Л.Е. Об асимптотических свойствах решений смешанных задач для квазилинейных параболических уравнений в неограниченных областях // Мат.сб.– 1991. –182, №8.–0.1200–1210.
Bernis F. Finite speed of propagation and asymptotic rates for some nonlinear higher order parabolic equations with absorption //Proc. Roy. Soc. Edinburgh.–1986.–104.–P.l–19.
Bernis F. Qualitative prorerties for some nonlinear higher order degenerate parabolic equations.–IMA Prepr.184. Univ. of Minnesota, 1985.
Мазья В.Г. Пространства Соболева.– Л.: Изд–во Ленингр. ун–та, 1985.–416с.
Copyright (c) 1992 A. E. Shyshkov
This work is licensed under a Creative Commons Attribution 4.0 International License.