Evaluation Fibrations and Path-Components of the Mapping Space M(Sn+k,Sn) for 8 ≤ k ≤ 13

Authors

  • Melo Thiago de
  • M. Golasinski

Abstract

Let M\left( {{{\mathbb{S}}^{m}},{{\mathbb{S}}^n}} \right) be the space of maps from the m-sphere {\mathbb{S}}^{m} into the n-sphere {\mathbb{S}}^{n} with m,n ≥ 1. We estimate the number of homotopy types of path-components M_{\alpha}\left( {{{\mathbb{S}}^{n+k }},{{\mathbb{S}}^n}} \right) and fiber homotopy types of the evaluation fibrations {\omega_{\alpha }}:{M_{\alpha }}\left( {{{\mathbb{S}}^{n+k }},{{\mathbb{S}}^n}} \right)\to {{\mathbb{S}}^n} for 8 ≤ k ≤ 13 and \alpha \in {\pi_{n+k }}\left( {{{\mathbb{S}}^n}} \right) extending the results of [Mat. Stud. - 2009. - 31, № 2. -P. 189-194]. Further, the number of strong homotopy types of {\omega_{\alpha }}:{M_{\alpha }}\left( {{{\mathbb{S}}^{n+k }},{{\mathbb{S}}^n}} \right)\to {{\mathbb{S}}^n} for 8 ≤ k ≤ 13 is determined and some improvements of the results from [Mat. Stud. - 2009. - 31, № 2. - P. 189-194] are obtained.

Published

25.08.2013

Issue

Section

Research articles

How to Cite

de, Melo Thiago, and M. Golasinski. “Evaluation Fibrations and Path-Components of the Mapping Space M\left( {{{\mathbb{S}}^{n+k }},{{\mathbb{S}}^n}} \right) for 8 ≤ k ≤ 13”. Ukrains’kyi Matematychnyi Zhurnal, vol. 65, no. 8, Aug. 2013, pp. 1023-34, https://umj.imath.kiev.ua/index.php/umj/article/view/2488.