Sharp Kolmogorov-type inequalities for norms of fractional derivatives of multivariate functions

Authors

  • V. F. Babenko
  • N. V. Parfinovych Днепропетр. нац. ун-т
  • S. A. Pichugov Днепропетр. нац. ун-т ж.-д. трансп.

Abstract

Let C(Rm) be the space of bounded and continuous functions x:RmR equipped with the norm xC=∥xC(Rm):=sup{|x(t)|:tRm} and let ej,j=1,,m, be a standard basis in Rm. Given moduli of continuity ωj,j=1,,m, denote Hj,ωj:={xC(Rm):∥xωj=∥xHj,ωj=suptj0Δtjejx()Cωj(|tj|)<}. We obtain new sharp Kolmogorov-type inequalities for the norms DαεxC of mixed fractional derivatives of functions xmj=1Hj,ωj. Some applications of these inequalities are presented.

Published

25.03.2010

Issue

Section

Research articles

How to Cite

Babenko, V. F., et al. “Sharp Kolmogorov-Type Inequalities for Norms of Fractional Derivatives of Multivariate Functions”. Ukrains’kyi Matematychnyi Zhurnal, vol. 62, no. 3, Mar. 2010, pp. 301–314, https://umj.imath.kiev.ua/index.php/umj/article/view/2869.