Kolmogorov-type inequalities for mixed derivatives of functions of many variables
Abstract
Let γ=(γ1,...,γd) be a vector with positive components and let Dγ be the corresponding mixed derivative (of order γj with respect to the j th variable). In the case where d>1 and 0<k<r are arbitrary, we prove that supx∈Lrγ∞(Td)Drγx≠0||Dkγx||L∞(Td)||x||1−k/r||Drγ||k/rL∞(Td)=∞ and ||Dkγx||L∞(Td)≤K||x||1−k/rL∞(Td)||Drγx||k/rL∞(Td)(1+ln+||Drγx||L∞(Td)||x||L∞(Td))β for all x∈Lrγ∞(Td) Moreover, if ˉβ is the least possible value of the exponent β in this inequality, then (d−1)(1−kr)⩽ˉβ(d,γ,k,r)⩽d−1.Downloads
Published
25.05.2004
Issue
Section
Research articles
How to Cite
Babenko, V. F., et al. “Kolmogorov-Type Inequalities for Mixed Derivatives of Functions of Many Variables”. Ukrains’kyi Matematychnyi Zhurnal, vol. 56, no. 5, May 2004, pp. 579-94, https://umj.imath.kiev.ua/index.php/umj/article/view/3779.