Kolmogorov-type inequalities for mixed derivatives of functions of many variables

Authors

  • V. F. Babenko
  • N. P. Korneichuk
  • S. A. Pichugov Днепропетр. нац. ун-т ж.-д. трансп.

Abstract

Let γ=(γ1,...,γd) be a vector with positive components and let Dγ be the corresponding mixed derivative (of order γj with respect to the j th variable). In the case where d>1 and 0<k<r are arbitrary, we prove that supxLrγ(Td)Drγx0||Dkγx||L(Td)||x||1k/r||Drγ||k/rL(Td)= and ||Dkγx||L(Td)K||x||1k/rL(Td)||Drγx||k/rL(Td)(1+ln+||Drγx||L(Td)||x||L(Td))β for all xLrγ(Td) Moreover, if ˉβ is the least possible value of the exponent β in this inequality, then (d1)(1kr)ˉβ(d,γ,k,r)d1.

Published

25.05.2004

Issue

Section

Research articles

How to Cite

Babenko, V. F., et al. “Kolmogorov-Type Inequalities for Mixed Derivatives of Functions of Many Variables”. Ukrains’kyi Matematychnyi Zhurnal, vol. 56, no. 5, May 2004, pp. 579-94, https://umj.imath.kiev.ua/index.php/umj/article/view/3779.