Generalized Picone identity for Finsler $p$-Laplacian and its applications
Abstract
UDC 517.9
We prove a generalized Picone-type identity for Finsler $p$-Laplacian and use it to establish some qualitative results for some boundary-value problems involving Finsler $p$-Laplacian.
References
W. Allegretto, Positive solutions and spectral properties of weakly coupled elliptic systems, J. Math. Anal. and Appl., 120, № 2, 723 – 729 (1986), https://doi.org/10.1016/0022-247X(86)90191-5 DOI: https://doi.org/10.1016/0022-247X(86)90191-5
W. Allegretto, Sturmian theorems for second order systems, Proc. Amer. Math. Soc., 94, № 2, 291 – 296 (1985), https://doi.org/10.2307/2045393 DOI: https://doi.org/10.1090/S0002-9939-1985-0784181-8
W. Allegretto, Y. X.Huang, A Picone’s identity for the p-Laplacian and applications, Nonlinear Anal., 32, № 7, 819 – 830 (1998), https://doi.org/10.1016/S0362-546X(97)00530-0 DOI: https://doi.org/10.1016/S0362-546X(97)00530-0
K. Bal, Generalized Picone’s identity and its applications, Electron. J. Different. Equat., 243, 1 – 6 (2013).
K. Bal, P. Garain, I. Mandal, Some qualitative properties of Finsler $p$-Laplacian, Indag. Math., 28, № 6, 1258 – 1264 (2017), https://doi.org/10.1016/j.indag.2017.09.008 DOI: https://doi.org/10.1016/j.indag.2017.09.008
M. Belloni, V. Ferone, B. Kawohl, Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators, Z. angew. Math. und Phys., 54, 771 – 783 (2003), https://doi.org/10.1007/s00033-003-3209-y DOI: https://doi.org/10.1007/s00033-003-3209-y
G. Bognár, O. Došlý, Picone-type identity for pseudo $p$-Laplacian with variable power, Electron. J. Different. Equat., 174, 1 – 8 (2012).
F. Della Pietra, N. Gavitone, Anisotropic elliptic problems involving Hardy-type potentials, J. Math. Anal. and Appl. 397, 800 – 813 (2013), https://doi.org/10.1016/j.jmaa.2012.08.008 DOI: https://doi.org/10.1016/j.jmaa.2012.08.008
F. Della Pietra, N. Gavitone, Sharp bounds for the first eigenvalue and the torsional rigidity related to some anisotropic operators, Math. Nachr., 287, № 2-3, 194 – 209 (2014), https://doi.org/10.1002/mana.201200296 DOI: https://doi.org/10.1002/mana.201200296
F. Della Pietra, N. Gavitone, Faber – Krahn inequality for anisotropic eigenvalue problems with Robin boundary conditions, Potential Anal., 41, 1147 – 1166 (2014), https://doi.org/10.1007/s11118-014-9412-y DOI: https://doi.org/10.1007/s11118-014-9412-y
G. Dwivedi, J. Tyagi, Remarks on the qualitative questions for biharmonic operators, Taiwan. J. Math., 19, № 6, 1743 – 1758 (2015), https://doi.org/10.11650/tjm.19.2015.5566 DOI: https://doi.org/10.11650/tjm.19.2015.5566
G. Dwivedi, J. Tyagi, Picone’s identity for biharmonic operators on Heisenberg group and its applications, Nonlinear Different. Equat. and Appl., 23, № 2, 1 – 26 (2016), https://doi.org/10.1007/s00030-016-0376-z DOI: https://doi.org/10.1007/s00030-016-0376-z
G. Dwivedi, J. Tyagi, A note on the Caccioppoli inequality for biharmonic operators, Mediterr. J. Math., 13, № 4, 1823 – 1828 (2016), https://doi.org/10.1007/s00009-015-0620-5 DOI: https://doi.org/10.1007/s00009-015-0620-5
G. Dwivedi, Picone’s identity for$ p$-biharmonic operator and its applications, arXiv:1503.05535, (2015).
L. C. Evans, Partial differential equations, Grad. Stud. Math., 19 (2010), https://doi.org/10.1090/gsm/019 DOI: https://doi.org/10.1090/gsm/019
T. Feng, A new nonlinear Picone identity and applications, Math. Appl., 30, № 2, 278 – 283 (2017).
T. Feng, A generalized nonlinear Picone identity for the $p$-biharmonic operator and its applications, J. Inequal. and Appl., 2019, Article 56 (2019), https://doi.org/10.1186/s13660-019-2008-8 DOI: https://doi.org/10.1186/s13660-019-2008-8
V. Ferone, B. Kawohl, Remarks on a Finsler – Laplacian, Proc. Amer. Math. Soc. 137, № 1, 247 – 253 (2009), https://doi.org/10.1090/S0002-9939-08-09554-3 DOI: https://doi.org/10.1090/S0002-9939-08-09554-3
J. JJaroš, Caccioppoli estimates through an anisotropic Picone’s idenity, Proc. Amer. Math. Soc., 143, 1137 – 1144 (2015), https://doi.org/10.1090/S0002-9939-2014-12294-5 DOI: https://doi.org/10.1090/S0002-9939-2014-12294-5
J. Jaroš, The higher-order Picone identity and comparison of half-linear differential equations of even order, Nonlinear Anal., 74, № 18, 7513 – 7518 (2011), https://doi.org/10.1016/j.na.2011.08.006 DOI: https://doi.org/10.1016/j.na.2011.08.006
A. Manes, A. M. Micheletti, Un’estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine, Boll. Unione Mat. Ital., 7, 285 – 301 (1973).
A. Mercaldo, M. Sano, F. Takahashi, Finsler Hardy inequalities, Math. Nachr., 293, № 12, 2370 – 2398 (2020), https://doi.org/10.1002/mana.201900117 DOI: https://doi.org/10.1002/mana.201900117
M. Picone, Un teorema sulle soluzioni delle equazioni lineari ellittiche autoaggiunte alle derivate parziali del secondo-ordine, Atti Accad. Naz. Lincei Rend. 20, 213 – 219 (1911).
A. Tiryaki, Caccioppoli-type estimates for a class of nonlinear differential operators, Ukr. Math. J., 70, № 12, 1649 – 1659 (2019). DOI: https://doi.org/10.1007/s11253-019-01596-w
J. Tyagi, A nonlinear Picone’s identity and applications, Appl. Math. Lett., 26, 624 – 626 (2013), https://doi.org/10.1016/j.aml.2012.12.020 DOI: https://doi.org/10.1016/j.aml.2012.12.020
G. Wang, C. Xia, An optimal anisotropic Poincare inequality for convex domains, Pacif. J. Math., 258, № 2, 305 – 326 (2012), https://doi.org/10.2140/pjm.2012.258.305 DOI: https://doi.org/10.2140/pjm.2012.258.305
G. Wang, C. Xia, Blow-up analysis of a Finsler – Liouville equation in two dimensions, J. Different. Equat., 252, 1668 – 1700 (2012), https://doi.org/10.1016/j.jde.2011.08.001 DOI: https://doi.org/10.1016/j.jde.2011.08.001
N. Yoshida, Picone identities for half-linear elliptic operators with $p(x)$-Laplacians and applications to Sturmian comparison theory, Nonlinear Anal., 74, № 16, 5631 – 5642 (2011), https://doi.org/10.1016/j.na.2011.05.048 DOI: https://doi.org/10.1016/j.na.2011.05.048
C. Zhou, C. Zhou, Moser – Trudinger inequality involving the anisotropic Dirichlet norm $(int_Omega F^N(nabla u)dx)^{frac1N}$ on $W^{1,N}_0(Omega)$, J. Funct. Anal., 276, 2901 – 2935 (2019), https://doi.org/10.1016/j.jfa.2018.12.001 DOI: https://doi.org/10.1016/j.jfa.2018.12.001
Copyright (c) 2021 Gaurav Dwivedi
This work is licensed under a Creative Commons Attribution 4.0 International License.