Еxact rates in the Davis – Gut law of iterated logarithm for the first moment convergence of independent identically distributed random variables

Authors

  • X.-Y. Xiao
  • H.-W. Yin

Abstract

Let {X,Xn,n1} be a sequence of independent identically distributed random variables and let Sn=ni=1Xi, Mn=max. For r > 0, let a_n(\varepsilon) be a function of \varepsilon such that a_n(\varepsilon ) \mathrm{l}\mathrm{o}\mathrm{g} \mathrm{l}\mathrm{o}\mathrm{g} n \rightarrow \tau as n \rightarrow \infty and \varepsilon \searrow \surd r. If EX^2I\{|X| \geq t\} = o(\text{log}\text{log}t)^{-1}) as t \rightarrow \infty , then, by using the strong approximation, we show that \lim_{\varepsilon \searrow \surd r} \frac 1{-\text{log}(\varepsilon^2 - r)} \sum ^{\infty}_{n=1}\frac{(\text{log} n)^{r-1}}{n^{3/2}}E \Bigl\{ M_n - (\varepsilon + a_n(\varepsilon ))\sigma \sqrt{2n \text{log log} n} \Bigr\}_{+} = \frac{2\sigma \varepsilon^{-2\tau \sqrt{r}}}{\sqrt{2\pi}r} holds if and only if EX = 0, EX^2 = \sigma^2, and EX = 0, EX^2 = \sigma^2 та EX^2(\mathrm{l}\mathrm{o}\mathrm{g} | X| )^{r-1}(\mathrm{l}\mathrm{o}\mathrm{g} \mathrm{l}\mathrm{o}\mathrm{g} | X| )^{-\frac 12} < \infty.

Downloads

Published

25.02.2017

Issue

Section

Research articles

How to Cite

Xiao, X.-Y., and H.-W. Yin. “Еxact Rates in the Davis – Gut Law of Iterated Logarithm for the First Moment Convergence of Independent Identically Distributed Random Variables”. Ukrains’kyi Matematychnyi Zhurnal, vol. 69, no. 2, Feb. 2017, pp. 240-56, https://umj.imath.kiev.ua/index.php/umj/article/view/1689.