Remark on the tautness modulo an analytic hypersurface of hartogs type domains
Abstract
We present sufficient conditions for the tautness modulo an analytic hypersurface of Hartogs-type domains $\Omega_H(X)$ and Hartogs–Laurent-type domains $\Sigma_{u, v}(X).$ We also propose a version of Eastwood's theorem for the tautness modulo an analytic hypersurface.
References
Barth, Theodore J. The Kobayashi indicatrix at the center of a circular domain. Proc. Amer. Math. Soc. 88 (1983), no. 3, 527--530. doi: 10.2307/2045007
Dieu, Nguyen Quang; Thai, Do Duc. Complete hyperbolicity of Hartogs domain. Manuscripta Math. 112 (2003), no. 2, 171--181. MR2064914 doi: 10.1007/s00229-003-0388-y
Duc, Pham Viet; Duc, Mai Anh; Pham Nguyen Thu Trang. On tautness modulo an analytic subset of complex spaces. Acta Math. Vietnam. 42 (2017), no. 4, 717--726. MR3708038 doi: 10.1007/s40306-017-0214-3
Eastwood, Alan. A propos des variétés hyperboliques complètes. (French) C. R. Acad. Sci. Paris Sér. A-B 280 (1975), {rm A}1071--{rm A}1074. MR0414941
Jarnicki, Marek; Pflug, Peter. Invariant distances and metrics in complex analysis. De Gruyter Expositions in Mathematics, 9. Walter de Gruyter & Co., Berlin, 1993. {rm xii}+408 pp. ISBN: 3-11-013251-6 doi: 10.1515/9783110870312
Kobayashi, Shoshichi. Hyperbolic complex spaces. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 318. Springer-Verlag, Berlin, 1998. xiv+471 pp. ISBN: 3-540-63534-3 doi: 10.1007/978-3-662-03582-5
Park, Sung-Hee. On hyperbolicity and tautness of certain Hartogs type domains. Rocky Mountain J. Math. 37 (2007), no. 3, 959--985. doi: 10.1216/rmjm/1182536172
Royden, H. L. Remarks on the Kobayashi metric. Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970), pp. 125--137. Lecture Notes in Math., Vol. 185, Springer, Berlin, 1971. MR0304694
Thai, Do Duc; Duc, Pham Viet. On the complete hyperbolicity and the tautness of the Hartogs domains. Internat. J. Math. 11 (2000), no. 1, 103--111. doi: 10.1142/S0129167X00000076
Do, Duc Thai; Mai, Anh Duc; Ninh, Van Thu. On limit Brody curves in $Bbb C^n$ and $(Bbb C^*)^2$. Kyushu J. Math. 69 (2015), no. 1, 111--123. MR3363111
Do Duc Thai; Nguyen Le Huong. A note on the Kobayashi pseudodistance and the tautness of holomorphic fiber bundles. Ann. Polon. Math. 58 (1993), no. 1, 1--5. doi: 10.4064/ap-58-1-1-5
Do Duc Thai; Thomas, Pascal J. ${bf D}^*$-extension property without hyperbolicity. Indiana Univ. Math. J. 47 (1998), no. 3, 1125--1130. doi: 10.1512/iumj.1998.47.1484
Thai, Do Duc; Thomas, Pascal J.; Trao, Nguyen Van; Duc, Mai Anh. On hyperbolicity and tautness modulo an analytic subset of Hartogs domains. Proc. Amer. Math. Soc. 141 (2013), no. 10, 3623--3631. doi: 10.1090/S0002-9939-2013-11645-X
Nguyen Van Trao; Tran Hue Minh. Remarks on the Kobayashi hyperbolicity of complex spaces. Acta Math. Vietnam. 34 (2009), no. 3, 375--387. MR2583947
This work is licensed under a Creative Commons Attribution 4.0 International License.