On relative ranks of finite transformation semigroups with restricted range
Abstract
UDC 512.5
We determine the relative rank of the semigroup ${\scr T }(X,Y)$ of all transformations on a finite chain $X$ with restricted range $Y\subseteq X$ modulo the set ${\scr OP }(X,Y)$ of all orientation-preserving transformations in ${\scr T }(X,Y).$ Moreover, we state the relative rank of the semigroup ${\scr OP }(X,Y)$ modulo the set ${\scr O}(X,Y)$ of all order-preserving transformations in ${\scr OP}(X,Y).$ In both cases we characterize the minimal relative generating sets.
References
P. M. Catarino, P. M. Higgins, The monoid of orientation-preserving mappings on a chain, Semigroup Forum, 58, 190 – 206 (1999), https://doi.org/10.1007/s002339900014 DOI: https://doi.org/10.1007/s002339900014
I. Dimitrova, V. H. Fernandes, J. Koppitz, A note on generators of the endomorphism semigroup of an infinite countable chain, J. Algebra and Appl., 16, № 2, Article 1750031 (2017), https://doi.org/10.1142/S0219498817500311 DOI: https://doi.org/10.1142/S0219498817500311
I. Dimitrova, J. Koppitz, K. Tinpun, On the relative rank of the semigroup of orientation-preserving transformations with restricted range, Proc. 47th Spring Conf. Union Bulg. Math., 109 – 114 (2018).
V. H. Fernandes, P. Honyam, T. M. Quinteiro, B. Singha, On semigroups of endomorphisms of a chain with restricted range, Semigroup Forum, 89, 77 – 104 (2014), https://doi.org/10.1007/s00233-013-9548-x DOI: https://doi.org/10.1007/s00233-013-9548-x
V. H. Fernandes, P. Honyam, T. M. Quinteiro, B. Singha, On semigroups of orientation-preserving transformations with restricted range, Commun. Algebra, 44, 253 – 264 (2016), https://doi.org/10.1080/00927872.2014.975345 DOI: https://doi.org/10.1080/00927872.2014.975345
V. H. Fernandes, J. Sanwong, On the rank of semigroups of transformations on a finite set with restricted range, Algebra Colloq., 21, no. 3, 497 – 510 (2014), https://doi.org/10.1142/S1005386714000431 DOI: https://doi.org/10.1142/S1005386714000431
G. M. S. Gomes, J. M. Howie, On the rank of certain semigroups of order-preserving transformations, Semigroup Forum, 51, no. 3, 275 – 282 (1992), https://doi.org/10.1007/BF03025769 DOI: https://doi.org/10.1007/BF03025769
G. M. S. Gomes, J. M. Howie, On the ranks of certain finite semigroups of transformations, Math. Proc. Cambridge Phil. Soc., 101, no. 3, 395 – 403 (1987), https://doi.org/10.1017/S0305004100066780 DOI: https://doi.org/10.1017/S0305004100066780
P. M. Higgins, J. D. Mitchell, N. Ruškuc, Generating the full transformation semigroup using order preserving mappings, Glasgow Math. J., 45, no. 3, 557 – 566 (2003), https://doi.org/10.1017/S0017089503001460 DOI: https://doi.org/10.1017/S0017089503001460
J. M. Howie, Fundamentals of semigroup theory, Oxford Univ. Press, Oxford (1995).
J. M. Howie, R. B. McFadden, Idempotent rank in finite full transformation semigroups, Proc. Roy. Soc. Edinburgh A, 114, no. 3-4, 161 – 167 (1990), https://doi.org/10.1017/S0308210500024355 DOI: https://doi.org/10.1017/S0308210500024355
J. M. Howie, N. Ruˇskuc, P. M. Higgins, On relative ranks of full transformation semigroups<.em>, Commun. Algebra, 26, no. 3, 733 – 748 (1998), https://doi.org/10.1080/00927879808826160 DOI: https://doi.org/10.1080/00927879808826160
D. McAlister, Semigroups generated by a group and an idempotent, Commun. Algebra, 26, no. 2, 515 – 547 (1998), https://doi.org/10.1080/00927879808826145 DOI: https://doi.org/10.1080/00927879808826145
N. Ruškuc, On the rank of completely 0-simple semigroups, Math. Proc. Cambridge Phil. Soc., 116, no. 2, 325 – 338 (1994), https://doi.org/10.1017/S0305004100072613 DOI: https://doi.org/10.1017/S0305004100072613
J. S. V. Symons, Some results concerning a transformation semigroup, J. Austr. Math. Soc., 19, no. 4, 413 – 425 (1975). DOI: https://doi.org/10.1017/S1446788700034455
K. Tinpun, J. Koppitz, Relative rank of the finite full transformation semigroup with restricted range, Acta Math. Univ. Comenian., 85, № 2, 347 – 356 (2016), https://doi.org/10.1111/1365-2656.12477 DOI: https://doi.org/10.1111/1365-2656.12477
Copyright (c) 2021 Ilinka Dimitrova, Joerg Koppitz
This work is licensed under a Creative Commons Attribution 4.0 International License.