Estimates for wavelet coefficients on some classes of functions
Abstract
Let $ψ_m^D$ be orthogonal Daubechies wavelets that have $m$ zero moments and let $$W^k_{2, p} = \left\{f \in L_2(\mathbb{R}): ||(i \omega)^k \widehat{f}(\omega)||_p \leq 1\right\}, \;k \in \mathbb{N},$$. We prove that $$\lim_{m\rightarrow\infty}\sup\left\{\frac{|\psi^D_m, f|}{||(\psi^D_m)^{\wedge}||_q}: f \in W^k_{2, p} \right\} = \frac{\frac{(2\pi)^{1/q-1/2}}{\pi^k}\left(\frac{1 - 2^{1-pk}}{pk -1}\right)^{1/p}}{(2\pi)^{1/q-1/2}}.$$
Published
25.12.2007
How to Cite
BabenkoV. F., and SpectorS. A. “Estimates for Wavelet Coefficients on Some Classes of Functions”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 59, no. 12, Dec. 2007, pp. 1594–1600, https://umj.imath.kiev.ua/index.php/umj/article/view/3415.
Issue
Section
Research articles