Arbitrary binary relations, contraction mappings and $b$-metric spaces
Abstract
UDC 517.9
We prove some results on the existence and uniqueness of fixed points defined on a $b$-metric space endowed with an arbitrary binary relation. As applications, we obtain some statements on coincidence points involving a pair of mappings. Our results generalize, extend, modify and unify several well-known results especially those obtained by Alam and Imdad [J. Fixed Point Theory and Appl., 17, 693–702 (2015); Fixed Point Theory, 18, 415–432 (2017); Filomat, 31, 4421–4439 (2017)] and Berzig [J. Fixed Point Theory and Appl., 12, 221–238 (2012)]. Also, we provide an example to illustrate the suitability of results obtained.
References
Aghajani, Asadollah; Abbas, Mujahid; Roshan, Jamal Rezaei. Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces. Math. Slovakia. 64, no. 4, 941--960 (2014). https://doi.org/10.2478/s12175-014-0250-6 DOI: https://doi.org/10.2478/s12175-014-0250-6
Alam, Aftab; Imdad, Mohammad. Relation-theoretic contraction principle. J. Fixed Point Theory Appl. 17, no. 4, 693--702 (2015). https://doi.org/10.1007/s11784-015-0247-y DOI: https://doi.org/10.1007/s11784-015-0247-y
Alam, Aftab; Imdad, Mohammad. Comparable linear contractions in ordered metric spaces. Fixed Point Theory. 18, no. 2, 415--432 (2017). https://doi.org/10.24193/fpt-ro.2017.2.33 DOI: https://doi.org/10.24193/fpt-ro.2017.2.33
Alam, Aftab; Imdad, Mohammad. Monotone generalized contractions in ordered metric spaces. Bull. Korean Math. Soc. 53, no. 1, 61--81 (2016). https://doi.org/10.4134/BKMS.2016.53.1.061 DOI: https://doi.org/10.4134/BKMS.2016.53.1.061
Alam, Aftab; Imdad, Mohammad. Relation-theoretic metrical coincidence theorems. Filomat. 31, no. 14, 4421--4439 (2017). https://doi.org/10.2298/fil1714421a DOI: https://doi.org/10.2298/FIL1714421A
Alam, Aftab; Khan, Abdur Rauf; Imdad, Mohammad. Some coincidence theorems for generalized nonlinear contractions in ordered metric spaces with applications. Fixed Point Theory Appl. 2014, 2014:216, 30 pp. https://doi.org/10.1186/1687-1812-2014-216 DOI: https://doi.org/10.1186/1687-1812-2014-216
Bakhtin, I. A. The contraction mapping principle in almost metric space. (Russian) Functional analysis, No. 30 (Russian), 26--37, Ulʹyanovsk. Gos. Ped. Inst., Ulʹyanovsk, 1989. http://www.sciepub.com/reference/240487
Berzig, Maher. Coincidence and common fixed point results on metric spaces endowed with an arbitrary binary relation and applications. J. Fixed Point Theory Appl. 12, no. 1-2, 221--238 (2012). https://doi.org/10.1007/s11784-013-0094-7 DOI: https://doi.org/10.1007/s11784-013-0094-7
L. Ćirić, Some recent results in metrical fixed point theory, Univ. Belgrade, Beograd (2003).
Ćirić, Ljubomir; Cakić, Nenad; Rajović, Miloje; Ume, Jeong Sheok. Monotone generalized nonlinear contractions in partially ordered metric spaces. Fixed Point Theory Appl. 2008, Art. ID 131294, 11 pp. https://doi.org/10.1155/2008/131294 DOI: https://doi.org/10.1155/2008/131294
Czerwik, S. Contraction mappings in $b$-metric spaces. Acta Math. Inform. Univ. Ostraviensis. 1, 5--11 (1993). https://dml.cz/handle/10338.dmlcz/120469
Chandok, Sumit; Radenović, Stojan. $R$ type functions and coincidence points. Appl. Math. E-Notes. 19 (2019), 250--256. https://www.emis.de/journals/AMEN/2019/AMEN-180512.pdf
Chandok, Sumit; Ozturk, Vildan; Radenović, Stojan. On fixed points in the context of $b$-metric spaces. Mat. Vesnik. 71, no. 1-2, 23--30 (2019). https://www.researchgate.net/publication/270607973_Some_Fixed_Point_Theorems_in_b-metric_Space
Ding, Hui-Sheng; Imdad, Mohammad; Radenović, Stojan; Vujaković, Jelena. On some fixed point results in $b$-metric, rectangular and $b$-rectangular metric spaces. Arab J. Math. Sci. 22, no. 2, 151--164 (2016). https://doi.org/10.1016/j.ajmsc.2015.05.003 DOI: https://doi.org/10.1016/j.ajmsc.2015.05.003
Haghi, R. H.; Rezapour, Sh.; Shahzad, N. Some fixed point generalizations are not real generalizations. Nonlinear Anal. 74, no. 5, 1799--1803 (2011). https://doi.org/10.1016/j.na.2010.10.052 DOI: https://doi.org/10.1016/j.na.2010.10.052
Hussain, Nawab; Parvaneh, Vahid; Roshan, Jamal Rezaei; Kadelburg, Zoran. Fixed points of cyclic weakly $(psi,varphi,L,A,B)$-contractive mappings in ordered $b$-metric spaces with applications. Fixed Point Theory Appl. 2013, 2013:256, 18 pp. https://doi.org/10.1186/1687-1812-2013-256 DOI: https://doi.org/10.1186/1687-1812-2013-256
Jovanović, Mirko; Kadelburg, Zoran; Radenović, Stojan. Common fixed point results in metric-type spaces. Fixed Point Theory Appl. 2010, Art. ID 978121, 15 pp. https://doi.org/10.1155/2010/978121 DOI: https://doi.org/10.1155/2010/978121
Kirk, William; Shahzad, Naseer. Fixed point theory in distance spaces. Springer, Cham, 2014. xii+173 pp. ISBN: 978-3-319-10926-8; 978-3-319-10927-5 https://doi.org/10.1007/978-3-319-10927-5 DOI: https://doi.org/10.1007/978-3-319-10927-5
Maddux, Roger D. Relation algebras. Studies in Logic and the Foundations of Mathematics, 150. Elsevier B. V., Amsterdam, 2006. xxvi+731 pp. ISBN: 978-0-444-52013-5; 0-444-52013-9 https://www.elsevier.com/books/relation-algebras/maddux/978-0-444-52013-5
Samet, Bessem; Turinici, Mihai. Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications. Commun. Math. Anal. 13, no. 2, 82--97 (2012). https://projecteuclid.org/euclid.cma/1349803595
Todorčević, Vesna. Harmonic quasiconformal mappings and hyperbolic type metrics. Springer, Cham (2019). xvii+163 pp. ISBN: 978-3-030-22590-2; 978-3-030-22591-9 https://doi.org/10.1007/978-3-030-22591-9 DOI: https://doi.org/10.1007/978-3-030-22591-9
Turinici, Mihai. Ran-Reurings fixed point results in ordered metric spaces. Libertas Math. 31, 49--55 (2011). http://system.lm-ns.org/index.php/lm/article/download/593/465
Turinici, Mihai. Nieto-Lopez theorems in ordered metric spaces. Math. Student. 81, no. 1-4, 219--229 (2012). https://arxiv.org/abs/1105.2401
This work is licensed under a Creative Commons Attribution 4.0 International License.