On the Binomial Asymptotics of an Entire Dirichlet Series
Abstract
Let M(σ) be the maximum modulus and let μ(σ) be the maximum term of an entire Dirichlet series with nonnegative exponents λ n increasing to ∞. We establish a condition for λ n under which the relations $$\ln {\mu }\left( {{\sigma ,}F} \right) \leqslant \Phi _1 \left( {\sigma } \right) + \left( {1 + o\left( 1 \right)} \right){\tau }\Phi _{2} \left( {\sigma } \right)\quad \left( {{\sigma } \to + \infty } \right)$$ and $$\ln M\left( {{\sigma ,}F} \right) \leqslant \Phi _1 \left( {\sigma } \right) + \left( {1 + \left( 1 \right)} \right){\tau }\Phi _{2} \left( {\sigma } \right)\quad \left( {{\sigma } \to + \infty } \right)$$ are equivalent under certain conditions on the functions Φ1 and Φ2.
Published
25.04.2001
How to Cite
SheremetaM. M. “On the Binomial Asymptotics of an Entire Dirichlet Series”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 53, no. 4, Apr. 2001, pp. 542-9, https://umj.imath.kiev.ua/index.php/umj/article/view/4275.
Issue
Section
Research articles