Weighted Lebesgue and central Morrey estimates for $p$-adic multilinear Hausdorff operators and its commutators
Abstract
UDC 517.9
We establish the sharp boundedness of $p$-adic multilinear Hausdorff operators on the product of Lebesgue and central Morrey spaces associated with both power weights and Muckenhoupt weights. Moreover, the boundedness for the commutators of $p$-adic multilinear Hausdorff operators on the such spaces with symbols in central BMO space is also obtained.
References
S. Albeverio, A. Yu. Khrennikov, V. M. Shelkovich, Harmonic analysis in the p-adic Lizorkin spaces: fractional operators, pseudo-differential equations, $p$-wavelets, Tauberian theorems, J. Fourier Anal. and Appl., 12, № 4, 393 – 425 (2006), https://doi.org/10.1007/s00041-006-6014-0 DOI: https://doi.org/10.1007/s00041-006-6014-0
A. V. Avetisov, A. H. Bikulov, S. V. Kozyrev, V. A. Osipov, $p$-adic models of ultrametric diffusion constrained by hierarchical energy landscapes, J. Phys. A: Math. Gen., 35, 177 – 189 (2002), https://doi.org/10.1088/0305-4470/35/2/301 DOI: https://doi.org/10.1088/0305-4470/35/2/301
A. V. Avetisov, A. H. Bikulov, V. A. Osipov, $p$-adic description of characteristic relaxation in complex systems, J. Phys. A: Math. Gen., 36, 4239 – 4246 (2003), https://doi.org/10.1088/0305-4470/36/15/301 DOI: https://doi.org/10.1088/0305-4470/36/15/301
N. M. Chuong, Yu. V. Egorov, A. Yu. Khrennikov, Y. Meyer, D. Mumford, Harmonic, wavelet and $p$-adic analysis, World Sci. (2007), https://doi.org/10.1142/9789812770707 DOI: https://doi.org/10.1142/6373
N. M. Chuong, D. V. Duong, Weighted Hardy – Littlewood operators and commutators on $p$-adic functional spaces, $p$-Adic numbers, Ultrametric Anal. and Appl., 5, №. 1, 65 – 82 (2013), https://doi.org/10.1134/S2070046613010044 DOI: https://doi.org/10.1134/S2070046613010044
N. M. Chuong, D. V. Duong, The $p$-adic weighted Hardy – Ces`aro operators on weighted Morrey – Herz space ,p Adic numbers, Ultrametric Anal. and Appl., 8, No 3, 204 – 216 (2016), https://doi.org/10.1134/S207004661603002X DOI: https://doi.org/10.1134/S207004661603002X
N. M. Chuong, D. V. Duong, K. H. Dung, Multilinear Hausdorff operators on some function spaces with variable exponent, (2017), arxiv.org/abs/1709.08185.
N. M. Chuong, N. V. Co, The Cauchy problem for a class of pseudo-differential equations over $p$-adic field, J. Math. Anal. and Appl., 340, № 1, 629 – 643 (2008), https://doi.org/10.1016/j.jmaa.2007.09.001 DOI: https://doi.org/10.1016/j.jmaa.2007.09.001
N. M. Chuong, H. D. Hung, Maximal functions and weighted norm inequalities on local fields, Appl. and Comput. Harmon. Anal., 29, 272 – 286 (2010), https://doi.org/10.1016/j.acha.2009.11.002 DOI: https://doi.org/10.1016/j.acha.2009.11.002
B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, On $p$-adic mathematical physics, p Adic numbers, Ultrametric Anal. and Appl., 1, No 1, 1 – 17 (2009), https://doi.org/10.1134/S2070046609010014 DOI: https://doi.org/10.1134/S2070046609010014
M. Dyachenko, E. Nursultanov, S. Tikhonov, Hardy – Littlewood and Pitt’s inequalities for Hausdorff operators, Bull. Sci. Math., 147, 40 – 57 (2018), https://doi.org/10.1016/j.bulsci.2018.06.003 DOI: https://doi.org/10.1016/j.bulsci.2018.06.003
L. Grafakos, Modern Fourier analysis, Second Ed., Springer (2008), https://doi.org/10.1007/978-0-387-09434-2 DOI: https://doi.org/10.1007/978-0-387-09434-2
F. Hausdorff, Summation Methoden und Momentfolgen, I. Math. Z., 9, 74 – 109 (1921), https://doi.org/10.1007/BF01378337 DOI: https://doi.org/10.1007/BF01378337
H. D. Hung, The $p$-adic weighted Hardy-Ces`aro operator and an application to discrete Hardy inequalities, J. Math. Anal. and Appl., 409, 868 – 879 (2014), https://doi.org/10.1016/j.jmaa.2013.07.056 DOI: https://doi.org/10.1016/j.jmaa.2013.07.056
W. A. Hurwitz, L. L. Silverman, The consistency and equivalence of certain definitions of summabilities, Trans. Amer. Math. Soc., 18, 1 – 20 (1917), https://doi.org/10.2307/1988924 DOI: https://doi.org/10.1090/S0002-9947-1917-1501058-2
T. Hyt¨onen, C. P´erez, E. Rela, Sharp reverse H¨older property for $A_{infty}$ weights on spaces of homogeneous type, J. Funct. Anal., 263, 3883 – 3899 (2012), https://doi.org/10.1016/j.jfa.2012.09.013 DOI: https://doi.org/10.1016/j.jfa.2012.09.013
S. Indratno, D. Maldonado, S. Silwal, A visual formalism for weights satisfying reverse inequalities, Expo. Math., 33, 1 – 29 (2015), https://doi.org/10.1016/j.exmath.2013.12.008 DOI: https://doi.org/10.1016/j.exmath.2013.12.008
S. Haran, Riesz potentials and explicit sums in arithmetic, Invent. Math., 101, 697 – 703 (1990), https://doi.org/10.1007/BF01231521 DOI: https://doi.org/10.1007/BF01231521
S. Haran, Analytic potential theory over the $p$-adics, Ann. Inst. Fourier (Grenoble)., 43, № 4, 905 – 944 (1993), http://www.numdam.org/item?id=AIF_1993__43_4_905_0 DOI: https://doi.org/10.5802/aif.1361
A. Yu. Khrennikov, $p$-adic valued distributions in mathematical physics, Kluwer Acad. Publ., Dordrecht etc. (1994), https://doi.org/10.1007/978-94-015-8356-5 DOI: https://doi.org/10.1007/978-94-015-8356-5
A. N. Kochubei, Pseudo-differential equations and stochastics over non-archimedean fields, Marcel Dekker, New York (2001), https://doi.org/10.1201/9780203908167 DOI: https://doi.org/10.4324/9780429207914
S. V. Kozyrev, Methods and applications of ultrametric and $p$-adic analysis: from wavelet theory to biophysics, Proc. Steklov Inst. Math., 274, 1 – 84 (2011). DOI: https://doi.org/10.1134/S0081543811070017
S. Lu, Y. Ding, D. Yan, Singular integrals and related topics, World Sci. Publ., Com., Singapore (2007). DOI: https://doi.org/10.1142/6428
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165, 207 – 226 (1972), https://doi.org/10.2307/1995882 DOI: https://doi.org/10.1090/S0002-9947-1972-0293384-6
J. Ruan, D. Fan, Q. Wu, Weighted Herz space estimates for Hausdorff operators on the Heisenberg group, Banach J. Math. Anal., 11, 513 – 535 (2017), https://doi.org/10.1215/17358787-2017-0004 DOI: https://doi.org/10.1215/17358787-2017-0004
K. S. Rim, J. Lee, Estimates of weighted Hardy – Littlewood averages on the $p$-adic vector space, J. Math. Anal. and Appl., 324, № 2, 1470 – 1477 (2006), https://doi.org/10.1016/j.jmaa.2006.01.038 DOI: https://doi.org/10.1016/j.jmaa.2006.01.038
E. M. Stein, Harmonic analysis, real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press (1993). DOI: https://doi.org/10.1515/9781400883929
V. S. Varadarajan, Path integrals for a class of $p$-adic Schr¨odinger equations, Lett. Math. Phys., 39, 97 – 106 (1997), https://doi.org/10.1023/A:1007364631796 DOI: https://doi.org/10.1023/A:1007364631796
V. S. Vladimirov, Tables of integrals of complex-valued functions of $p$-adic arguments, Proc. Steklov Inst. Math., 284, 1 – 59 (2014). DOI: https://doi.org/10.1134/S0081543814030018
V. S. Vladimirov, I. V. Volovich, $p$-Adic quantum mechanics, Commum. Math. Phys., 123, 659 – 676 (1989). DOI: https://doi.org/10.1007/BF01218590
V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adic analysis and mathematical physis, World Sci. (1994). DOI: https://doi.org/10.1142/1581
S. S. Volosivets, Multidimensional Hausdorff operator on $p$-adic field, $p$-Adic numbers, Ultrametric Anal. and Appl., 2, 252 – 259 (2010), https://doi.org/10.1134/S2070046610030076 DOI: https://doi.org/10.1134/S2070046610030076
S. S. Volosivets, Hausdorff operators on $p$-adic linear spaces and their properties in Hardy, BMO, and H¨older spaces, Mathematical Notes., 3, 382 – 391 (2013), https://doi.org/10.1134/S0001434613030048 DOI: https://doi.org/10.1134/S0001434613030048
Copyright (c) 2021 Nguyen Chuong, Dao Duong, Kieu Dung
This work is licensed under a Creative Commons Attribution 4.0 International License.