Smooth Solution of the Dirichlet Problem for a Quasilinear Hyperbolic Equation of the Second Order

  • Yu. A. Mitropolskiy
  • N. H. Khoma
  • S. G. Khoma

Abstract

On the basis of the exact solution of the linear Dirichlet problem \(u_{tt} - u_{xx} = f\left( {x,t} \right)\) , \(u\left( {0,t} \right) = u\left( {\pi ,t} \right) = 0,{\text{ }}u\left( {x,0} \right) = u\left( {x,2\pi } \right) = 0,\) \(0 \leqslant x \leqslant \pi ,{\text{ }}0 \leqslant t \leqslant 2\pi ,\) we obtain conditions for the solvability of the corresponding Dirichlet problem for the quasilinear equation u ttu xx = f(x, t, u, u t).
Published
25.07.2000
How to Cite
MitropolskiyY. A., KhomaN. H., and KhomaS. G. “Smooth Solution of the Dirichlet Problem for a Quasilinear Hyperbolic Equation of the Second Order”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 52, no. 7, July 2000, pp. 931-5, https://umj.imath.kiev.ua/index.php/umj/article/view/4492.
Section
Research articles