Criteria for the coincidence of the kernel of a function with the kernels of its Riesz and Abel integral means
Abstract
We indicate criteria for the coincidence of the Knopp kernels K(f) K(A f), and K (R f) of bounded functions f(t); here, $$R_f \left( t \right) = \frac{1}{{P\left( x \right)}}\int\limits_{\left[ {0;\left. t \right)} \right.} {f\left( x \right)dP and A_f \left( t \right)} = \frac{1}{{\int_0^\infty {e^{{{ - x} \mathord{\left/ {\vphantom {{ - x} t}} \right. \kern-\nulldelimiterspace} t}} dP} }}\int\limits_0^\infty {f\left( x \right)} e^{{{ - x} \mathord{\left/ {\vphantom {{ - x} t}} \right. \kern-\nulldelimiterspace} t}} dP$$ . In Particular, we prove that K(f) = K(A f) ⇔ K(f) = K(R f).
Published
25.12.1998
How to Cite
UsenkoE. G. “Criteria for the Coincidence of the Kernel of a Function With the Kernels of Its Riesz and Abel Integral Means”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 50, no. 12, Dec. 1998, pp. 1712–1714, https://umj.imath.kiev.ua/index.php/umj/article/view/4792.
Issue
Section
Short communications