Tauberian conditions under which convergence follows from the weighted mean summability and its statistical extension for sequences of fuzzy number
Abstract
UDC 517.5
Let $(p_n)$ be a sequence of nonnegative numbers such that $p_0>0$ and
$$
P_n:=\sum_{k=0}^{n}p_k\to\infty\qquad \text{as}\qquad n\to\infty.
$$
Let $(u_n)$ be a sequence of fuzzy numbers.
The weighted mean of $(u_n)$ is defined by
$$
t_n:=\frac{1}{P_n}\sum_{k=0}^{n}p_k
u_k\qquad \text{for}\qquad n =0,1,2,\ldots \,.
$$
It is known that the existence of the limit $\lim u_n=\mu_{0}$ implies that of $\lim t_n=\mu_{0}.$
For the the existence of the limit $st$-$\lim t_n=\mu_{0},$ we require the boundedness of $(u_n)$ in addition to the existence of the limit $\lim u_n=\mu_{0}.$
But, in general, the converse of this implication is not true.
In this paper, we obtain Tauberian conditions, under which the existence of the limit $\lim u_n=\mu_{0}$ follows from that of $\lim t_n=\mu_{0}$ or $st$-$\lim t_n=\mu_{0}.$
These Tauberian conditions are satisfied if $(u_n)$ satisfies the two-sided condition of Hardy type relative to $(P_n).$
References
L. A. Zadeh, Fuzzy sets, Inform. and Control, 8, 338 – 353 (1965). DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
D. Dubois, H. Prade, Operations on fuzzy numbers, Internat. J. Systems Sci., 9, № 6, 613 – 626 (1978), https://doi.org/10.1080/00207727808941724 DOI: https://doi.org/10.1080/00207727808941724
R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18, № 1, 31 – 43 (1986), https://doi.org/10.1016/0165-0114(86)90026-6 DOI: https://doi.org/10.1016/0165-0114(86)90026-6
M. Matloka, Sequences of fuzzy numbers, Busefal, 28, 28 – 37 (1986).
S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems, 33, № 1, 123 – 126 (1989), https://doi.org/10.1016/0165-0114(89)90222-4 DOI: https://doi.org/10.1016/0165-0114(89)90222-4
B. C. Tripathy, A. Baruah, M. Et, M. Gungor, On almost statistical convergence of new type of generalized difference sequence of fuzzy numbers, Iran. J. Sci. and Technol. Trans. A Sci., 36, № 2, 147 – 155 (2012).
I. ¸Canak, On the Riesz mean of sequences of fuzzy real numbers, J. Intell. Fuzzy Systems, 26, № 6, 2685 – 2688 (2014), https://doi.org/10.3233/IFS-130938 DOI: https://doi.org/10.3233/IFS-130938
Z. Önder, S. A. Sezer, I. ¸Canak, A Tauberian theorem for the weighted mean method of summability of sequences of fuzzy numbers, J. Intell. Fuzzy Systems, 28, № 3, 1403 – 1409 (2015). DOI: https://doi.org/10.3233/IFS-141424
H. Fast, Sur la convergence statistique, Colloq. Math., 2, 241 – 244 (1951), https://doi.org/10.4064/cm-2-3-4-241-244 DOI: https://doi.org/10.4064/cm-2-3-4-241-244
I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66, 361 – 375 (1959), https://doi.org/10.2307/2308747 DOI: https://doi.org/10.2307/2308747
A. Zygmund, Trigonometric series, Cambridge Univ. Press (1959).
F. Nuray, E. Sava¸s, Statistical convergence of sequences of fuzzy numbers, Math. Slovaca, 45, № 3, 269 – 273 (1995).
E. Sava¸s, On statistically convergent sequences of fuzzy numbers, Inform. Sci., 137, 277 – 282 (2001), https://doi.org/10.1016/S0020-0255(01)00110-4 DOI: https://doi.org/10.1016/S0020-0255(01)00110-4
S. Aytar, S. Pehlivan, Statistical convergence of sequences of fuzzy numbers and sequences of $α$ -cuts, Int. J. Gen. Syst., 37, № 2, 231 – 237 (2008), https://doi.org/10.1080/03081070701251075 DOI: https://doi.org/10.1080/03081070701251075
F. Ba¸sar, Summability theory and its applications, Bentham Sci. Publ., (2012). DOI: https://doi.org/10.2174/97816080545231120101
J. S. Kwon, On statistical and $p$-Cesaro convergence of fuzzy numbers ` , Korean J. Comput. and Appl. Math., 7, № 1, 195 – 203 (2000). DOI: https://doi.org/10.1007/BF03009937
Ö. Talo, F. Ba¸sar, On the slowly decreasing sequences of fuzzy numbers, Abstr. and Appl. Anal., 2013, Article ID 891986 (2013), 7 p., https://doi.org/10.1155/2013/891986 DOI: https://doi.org/10.1155/2013/891986
Ö. Talo, C. Bal, On statistical summability $(N,P)$ of sequences of fuzzy numbers, Filomat, 30, № 3, 873 – 884 (2016), https://doi.org/10.2298/FIL1603873T DOI: https://doi.org/10.2298/FIL1603873T
M. Et, B. C. Tripathy, A. J. Dutta, On pointwise statistical convergence of order $alpha$ of sequences of fuzzy mappings, Kuwait J. Sci., 41, № 3, 17 – 30 (2014).
F. Moricz, Ordinary convergence follows from statistical summability $(C, 1)$ in the case of slowly decreasing or oscillating sequences, Colloq. Math., 99, № 2, 207 – 219 (2004), https://doi.org/10.4064/cm99-2-6 DOI: https://doi.org/10.4064/cm99-2-6
F. Moricz, Theorems relating to statistical harmonic summability and ordinary convergence of slowly decreasing or oscillating sequences, Analysis, 24, № 2, 127 – 145 (2004), https://doi.org/10.1524/anly.2004.24.14.127 DOI: https://doi.org/10.1524/anly.2004.24.14.127
D. Dubois, H. Prade, Fuzzy sets and systems, Acad. Press (1980).
B. Bede, Mathematics of fuzzy sets and fuzzy logic, Springer (2013), https://doi.org/10.1007/978-3-642-35221-8 DOI: https://doi.org/10.1007/978-3-642-35221-8
P. V. Subrahmanyam, Cesàro summability for fuzzy real numbers. $p$-adic analysis, summability theory, fuzzy analysis and applications (INCOPASFA) (Chennai, 1998) ` , J. Anal., 7, 159 – 168 (1999).
G. A. Mikhalin, Theorems of Tauberian type for $(J,,p n)$ summation methods, Ukr. Math. J., 29, № 6, 564 – 569 (1977). DOI: https://doi.org/10.1007/BF01085962
J. Boos, Classical and modern methods in summability, Oxford Univ. Press (2000).
Copyright (c) 2021 İbrahim Çanak
This work is licensed under a Creative Commons Attribution 4.0 International License.