On sequences that do not increase the number of real roots of polynomials

  • A. G. Bakan
  • A. P. Holub

Abstract

A complete description is given for the sequences $\{λ_k}_{k = 0}^{ ∞}$ such that, for an arbitrary real polynomial $f(t) = \sum\nolimits_{k = 0}^n {a_k t^k }$, an arbitrary $A \in (0, +∞)$, and a fixed $C \in (0,+∞)$, the number of roots of the polynomial $(Tf)(t) = \sum\nolimits_{k = 0}^n {a_k \lambda _k t^k }$ on $[0,C]$ does not exceed the number of roots off $(t)$ on $[0, A]$.
Published
25.10.1993
How to Cite
BakanA. G., and HolubA. P. “On Sequences That Do Not Increase the Number of Real Roots of Polynomials”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 45, no. 10, Oct. 1993, pp. 1323–1331, https://umj.imath.kiev.ua/index.php/umj/article/view/5937.
Section
Research articles