Periodic Coulomb dynamics of three equal negative charges in the field of fixed four equal positive charges
Abstract
UDC 517.9
We found periodic solutions of the Coulomb $d$-dimensional $(d = 1, 2, 3)$ equations of motion for three equal negative point charges in the field of four equal positive point charges fixed at the vertices of a rectangle.
These systems possess an equilibrium configuration.
The periodic solutions are obtained with the help of the Lyapunov central theorem.
References
W. Skrypnik, Periodic and bounded solutions of the Coulomb equation of motion of two and three point charges with equilibrium on line, Ukr. Math. J., 66, № 5, 668 – 682 (2014); https://doi.org/10.1007/s11253-014-0970-3 DOI: https://doi.org/10.1007/s11253-014-0970-3
W. Skrypnik, Coulomb planar dynamics of two and three equal negative charges in field of fixed two equal positive charges, Ukr. Math. J., 68, № 11, 1528 – 1539 (2016); https://doi.org/10.1007/s11253-017-1326-6 DOI: https://doi.org/10.1007/s11253-017-1326-6
W. Skrypnik, Coulomb dynamics near equilibrium of two equal negative charges in the field of fixed two equal positive charges, Ukr. Math. J., 68, № 9, 1273 – 1285 (2016); https://doi.org/10.1007/s11253-017-1307-9 DOI: https://doi.org/10.1007/s11253-017-1307-9
W. Skrypnik, Coulomb dynamics of three equal negative charges in field of fixed two equal positive charges, J. Geom. and Phys., 127, 101 – 111 (2018); https://doi.org/10.1016/j.geomphys.2018.02.006 DOI: https://doi.org/10.1016/j.geomphys.2018.02.006
V. Skrypnyk, Periodychna kulonivska dynamika dvokh rivnykh vid’iemnykh zariadiv u poli fiksovanykh chotyrokh rivnykh dodatnykh zariadiv, Ukr. mat. zhurn., 72, № 10, 1432 – 1442 (2020). DOI: https://doi.org/10.37863/umzh.v72i10.741
V. Skrypnyk, Periodychna kulonivska dynamika dvokh rivnykh vid’iemnykh zariadiv u poli fiksovanykh shistokh rivnykh dodatnykh zariadiv, Ukr. mat. zhurn., 72, № 12, 1682 – 1696 (2020). DOI: https://doi.org/10.37863/umzh.v72i12.917
W. Skrypnik, Periodic Coulomb dynamics of three equal negative charges in the field of equal positive charges fixed in octagon vertices, Adv. Math. Phys., 2020, Article ID 35467136 (2020), 12 p.; https://doi.org/10.1155/2020/3547136. DOI: https://doi.org/10.1155/2020/3547136
A. Lyapunov, General problem of stability of motion, Moscow (1950); English translation: Internat. J. Control, 55, № 3, 521 – 790 (1992); https://doi.org/10.1080/00207179208934253 DOI: https://doi.org/10.1080/00207179208934253
M. S. Berger, Nonlinearity and functional analysis, Lect. Nonlinear Problems in Math. Analysis, Acad. Press, New York etc. (1977).
J. Marsden, M. McCracken, The Hopf bifurcation and its applications, Springer-Verlag, New York (1976). DOI: https://doi.org/10.1007/978-1-4612-6374-6
C. Siegel, J. Moser, Lectures on celestial mechanics, Springer-Verlag, Berlin etc. (1971). DOI: https://doi.org/10.1007/978-3-642-87284-6
V. Nemytskyi, V. Stepanov, Kachestvennaia teoryia dyfferentsyalnykh uravnenyi, Moskva, Lenynhrad (1947).
W. Skrypnik, Coulomb planar periodic motion of n equal charges n the field of n equal positive charges
fixed at a line and constant magnetic field, Adv. Math. Phys., 2018, Article ID 2548074 (2018), 10 p.; https://doi.org/10.1155/2548074.
C. Siegel, Über eine periodische Lösung im ebenen Dreikörperproblem, Math. Nachr., 4, 28 – 35 (1950 – 1951); https://doi.org/10.1002/mana.19500040104 DOI: https://doi.org/10.1002/mana.19500040104
W. Skrypnik, Mechanical systems with singular equilibria and Coulomb dynamics of three charges, Ukr. Math. J., 70, № 4, 519 – 533 (2018). DOI: https://doi.org/10.1007/s11253-018-1519-7
Copyright (c) 2021 Volodymyr Skrypnyk
This work is licensed under a Creative Commons Attribution 4.0 International License.