On Leibniz algebras whose subalgebras are either ideals or self-idealizing
Abstract
UDC 512.554
A subalgebra $S$ of a Leibniz algebra $L$ is called self-idealizing in $L$ if it coincides with its idealizer $\mathrm{I}_{L}(S).$
In this paper we study the structure of Leibniz algebras whose subalgebras are either ideals or self-idealizing.
References
S. A. Ayupov, B. A. Omirov, I. S. Rakhimov, Leibniz algebras: structure and classification, CRC Press, Taylor & Francis Group, Boca Raton, FL, USA (2020), https://doi.org/10.1201/9780429344336 DOI: https://doi.org/10.1201/9780429344336
D. W. Barnes, Some theorems on Leibniz algebras, Commun. Algebra, 39, №7, 2463 – 2472 (2011); https://doi.org/10.1080/00927872.2010.489529 DOI: https://doi.org/10.1080/00927872.2010.489529
A. Blokh, A generalization of the concept of a Lie algebra, Dokl. Akad. Nauk SSSR, 165, № 3, 471 – 473 (1965) (in Russian).
V. A. Chupordia, L. A. Kurdachenko, I. Ya. Subbotin, On some „minimal” Leibniz algebras, J. Algebra and Appl., 16, № 5, Article 1750082 (2017); https://doi.org/10.1142/S0219498817500827 DOI: https://doi.org/10.1142/S0219498817500827
V. V. Kirichenko, L. A. Kurdachenko, A. A. Pypka, I. Ya. Subbotin, Some aspects of Leibniz algebra theory, Algebra and Discrete Math., 24, № 1, 1 – 33 (2017).
L. A. Kurdachenko, J. Otal, A. A. Pypka, Relationships between factors of canonical central series of Leibniz
algebras, Eur. J. Math., 2, 565 – 577 (2016); https://doi.org/10.1007/s40879-016-0093-5 DOI: https://doi.org/10.1007/s40879-016-0093-5
L. A. Kurdachenko, J. Otal, I. Ya. Subbotin, On some properties of the upper central series in Leibniz algebras, Comment. Math. Univ. Carolin., 60, № 2, 161 – 175 (2019); https://doi.org/10.14712/1213-7243.2019.009 DOI: https://doi.org/10.14712/1213-7243.2019.009
L. A. Kurdachenko, N. N. Semko, I. Ya. Subbotin, The Leibniz algebras whose subalgebras are ideals, Open Math., 15b>, 92 – 100 (2017); https://doi.org/10.1515/math-2017-0010 DOI: https://doi.org/10.1515/math-2017-0010
L. A. Kurdachenko, I. Ya. Subbotin, N. N. Semko, From groups to Leibniz algebras: common approaches, parallel results, Adv. Group Theory and Appl., 5, 1 – 31 (2018); https://doi.org/10.4399/97888255161421
L. A. Kurdachenko, I. Ya. Subbotin, N. N. Semko, On the anticommutativity in Leibniz algebras, Algebra and Discrete Math., 26, № 1, 97 – 109 (2018), https://doi.org/10.15407/dopovidi2018.01.010 DOI: https://doi.org/10.15407/dopovidi2018.01.010
L. A. Kurdachenko, I. Ya. Subbotin, V. S. Yashchuk, Leibniz algebras whose subideals are ideals, J. Algebra and Appl., 17, № 8, Article 1850151 (2018); https://doi.org/10.1142/S0219498818501517 DOI: https://doi.org/10.1142/S0219498818501517
L. A. Kurdachenko, I. Ya. Subbotin, V. S. Yashchuk, Some antipodes of ideals in Leibniz algebras, J. Algebra and Appl., 19, № 6, Article 2050113 (2020); https://doi.org/10.1142/S0219498820501133 DOI: https://doi.org/10.1142/S0219498820501133
J. L. Loday, Cyclic homology, Grundlehren Math. Wiss., 301, Springer-Verlag, Berlin, Heidelberg (1992); https://doi.org/10.1007/978-3-662-21739-9 DOI: https://doi.org/10.1007/978-3-662-21739-9
J. L. Loday, Une version non commutative des alg´ebres de Lie: les alg´ebres de Leibniz, Enseign. Math., 39, 269 – 293 (1993) (in French).
J. L. Loday, T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann., 296, № 1, 139 – 158 (1993); https://doi.org/10.1007/BF01445099 DOI: https://doi.org/10.1007/BF01445099
Copyright (c) 2021 Oleksandr Pypka
This work is licensed under a Creative Commons Attribution 4.0 International License.