On perturbation of Drazin invertible linear relations

  • Y. Chamkha Sfax University, Tunisia
  • M. Kammoun Sfax University, Tunisia
Keywords: Drazin invertible linear relation, left and right Drazin invertible linear relation, perturbation of linear relations

Abstract

UDC 517.98

We study the stability of regular, finite ascent, and finite descent linear relations defined in Banach spaces under commuting nilpotent operator perturbations.  As an application, we give the invariance theorem of Drazin invertible spectrum under these perturbations. We also focus on the study of some properties of the left and right Drazin invertible linear relations.  It is proved that, for bounded and closed left (resp., right) Drazin invertible linear relation with nonempty resolvent set, $0$ is an isolated point of the associated approximate point spectrum (resp., surjective spectrum).

References

J. V. Neumann, Functional operators, vol. 2, The geometry of orthogonal spaces, Ann. Math. Stud., Princeton Univ. Press, Princeton (1950).

P. Aiena, T. M. Biondi, C. Carpintero, On Drazin invertibility, Proc. Amer. Math. Soc., 136, 2839–2848 (2008). DOI: https://doi.org/10.1090/S0002-9939-08-09138-7

T. Alvarez, Small perturbation of normally solvable relations, Publ. Math. Debrecen, 80, 155–168 (2012). DOI: https://doi.org/10.5486/PMD.2012.4972

T. Alvarez, On regular linear relations, Acta Math. Sin. (Engl. Ser.), 28, 183–194 (2012). DOI: https://doi.org/10.1007/s10114-012-9314-0

T. Alvarez, Left-right Browder linear relations and Riesz perturbations, Acta Math. Sci., 37, 1437–1452 (2017). DOI: https://doi.org/10.1016/S0252-9602(17)30083-8

T. Alvarez, F. Fakhfakh, M. Mnif, Left-right Fredholm and left-right Browder linear relations, Filomat, 31, № 2, 255–271 (2017). DOI: https://doi.org/10.2298/FIL1702255A

H. Bouaniza, M. Mnif, On strictly quasi-Fredholm linear relations and semi-B-Fredholm linear relation perturbations, Filomat, 31, № 20, 6337–6355 (2017). DOI: https://doi.org/10.2298/FIL1720337B

E. A. Coddington, Multivalued operators and boundary value problems, Lect. Notes in Math., 183, Springer-Verlag, Berlin (1971). DOI: https://doi.org/10.1007/BFb0060405

S. R. Caradus, Generalized inverses and operator theory, Queen's Papers in Pure and Appl. Math., Queen's Univ., Kingston, Ontario, 50 (1978).

R. W. Cross, Multivalued linear operator, Marcel Dekker Inc. (1998).

E. Chafai, M. Mnif, Descent and essential descent spectrum of linear relations, Extracta Math., 29, 117–139 (2014).

E. Chafai, M. Mnif, Ascent and essential ascent spectrum of linear relations, Extracta Math., 31, 145–167 (2016). DOI: https://doi.org/10.2298/FIL1703709C

Y. Chamkha, M. Mnif, The class of B-Fredholm linear relations, Complex Anal. and Oper. Theory, 9, 1681–1699 (2015). DOI: https://doi.org/10.1007/s11785-014-0438-3

M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly, 65, 506–514 (1958). DOI: https://doi.org/10.1080/00029890.1958.11991949

M. P. Drazin, Extremal definitions of generalized inverses, Linear Algebra and Appl., 165, 185–196 (1992). DOI: https://doi.org/10.1016/0024-3795(92)90237-5

H. Du, K. Yang, Perturbations of Drazin invertible operators, Front. Math. China, 10, 199–208 (2015). DOI: https://doi.org/10.1007/s11464-014-0436-9

B. P. Duggal, B-Browder operators and perturbations, Funct. Anal. Approx. and Comput., 4, 71–75 (2012).

T. Kaczynski, Multivalued maps as a tool in modeling and rigorous Numerics, J. Fixed Point Theory and Appl., 2, 151–176 (2008). DOI: https://doi.org/10.1007/s11784-008-0089-y

A. Favini, A. Yagi, Multivalued linear operators and degenerate evolution equations, Ann. Mat. Pura Appl., 163, 353–384 (1993). DOI: https://doi.org/10.1007/BF01759029

F. Fakhfakh, M. Mnif, Perturbation theory of lower semi-Browder multivalued linear operators, Publ. Math. Debrecen., 78, 595–606 (2011). DOI: https://doi.org/10.5486/PMD.2011.4799

A. Ghorbel, M. Mnif, Drazin inverse of multivalued operators and its application, Monatsh. Math., 189, 273–293 (2019). DOI: https://doi.org/10.1007/s00605-018-1257-9

N. C. Gonzalez, J. J. Koliha, Perturbation of the Drazin inverse for closed linear operators, Integral Equat. and Oper. Theory, 36, 92–106 (2000). DOI: https://doi.org/10.1007/BF01236288

C. F. King, A note on Drazin inverses, Pacific J. Math., 70, 383–390 (1977). DOI: https://doi.org/10.2140/pjm.1977.70.383

V. Kordula, V. Muller, The distance from the Apostol spectrum, Proc. Amer. Math. Soc., 124, 2055–3061 (1996). DOI: https://doi.org/10.1090/S0002-9939-96-03306-0

L.-Ph. Labrousse, A. Sandovici, H. S. V. de Snoo, H. Winkler, The Kato decomposition of quasi-Fredholm relations, Oper. Matrices, 4, № 1, 1–51 (2010). DOI: https://doi.org/10.7153/oam-04-01

M. Mnif, A. A. Ouled-Hmed, Local spectral theory and surjective spectrum of linear relations, Ukr. Mat. Zh., 73, № 2, 222–237 (2021). DOI: https://doi.org/10.37863/umzh.v73i2.81

M. Z. Nashed, Generalized inverses and applications, Acad. Press, New York (1976).

A. Ouled Hmed, M. Mnif, Analytic core and quasi-nilpotent part of linear relations in Banach spaces, Filomat, 2499–2515 (2018). DOI: https://doi.org/10.2298/FIL1807499M

A. Sandovici, H. de Snoo, An index formula for the product of linear relations, Linear Algebra and Appl., 431, 2160–2171 (2009). DOI: https://doi.org/10.1016/j.laa.2009.07.011

A. Sandovici, H. Snoo, H. Winkler, Ascent, descent, nullity, defect and related notions for linear relations in linear spaces, Linear Algebra and Appl., 423, 456–497 (2007). DOI: https://doi.org/10.1016/j.laa.2007.01.024

Published
02.03.2023
How to Cite
Chamkha, Y., and M. Kammoun. “On Perturbation of Drazin Invertible Linear Relations”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, no. 2, Mar. 2023, pp. 269 -86, doi:10.37863/umzh.v75i2.6761.
Section
Research articles