A note on the weighted log canonical threshold of toric plurisubharmonic functions
Abstract
UDC 517.54
We prove a semicontinuity theorem for a class of certain weighted log canonical threshold of toric plurisubharmonic functions.
References
J.-P. Demailly, Monge–Ampère operators, Lelong numbers and intersection theory, in: V. Ancona, A. Silva (Eds.), Complex Analysis and Geometry, Univ. Ser. Math., Plenum Press, New York (1993). DOI: https://doi.org/10.1007/978-1-4757-9771-8_4
J.-P. Demailly, Complex analytic and differential geometry; http://www-fourier.ujf-grenoble.fr/demailly/books.html (1997).
J.-P. Demailly, A numerical criterion for very ample line bundles, J. Different. Geom., 37, 323–374 (1993). DOI: https://doi.org/10.4310/jdg/1214453680
J.-P. Demailly, J. Kollár, Semicontinuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds, Ann. Sci. Èc. Norm. Supér. (4), 34, 525–556 (2001). DOI: https://doi.org/10.1016/S0012-9593(01)01069-2
J.-P. Demailly, P. H. Hiep, A sharp lower bound for log canonical threshold, Acta Math., 212, 1–9 (2014). DOI: https://doi.org/10.1007/s11511-014-0107-4
P. H. Hiep, The weighted log canonical threshold, C. R. Acad. Sci. Paris, Ser. I, 352, 283–288 (2014). DOI: https://doi.org/10.1016/j.crma.2014.02.010
P. H. Hiep, Continuity properties of certain weighted log canonical thresholds, C. R. Acad. Sci. Paris, Ser. I, 355, 34–39 (2017). DOI: https://doi.org/10.1016/j.crma.2016.11.005
P. H. Hiep, Log canonical thresholds and Monge–Ampère masses, Math. Ann., 370, № 1-2, 555–566 (2018). DOI: https://doi.org/10.1007/s00208-017-1518-2
P. H. Hiep, T. Tung, The weighted log canonical thresholds of toric plurisubharmonic functions, C. R. Acad. Sci. Paris, Ser. I, 353, № 2, 127–131 (2015). DOI: https://doi.org/10.1016/j.crma.2014.11.005
C. O. Kiselman, Attenuating the singularities of plurisubharmonic functions, Ann. Polon. Math., 60, 173–197 (1994). DOI: https://doi.org/10.4064/ap-60-2-173-197
D. H. Phong, J. Sturm, Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions, Ann. Math. (2), 152, 277–329 (2000). DOI: https://doi.org/10.2307/2661384
A. Rashkovskii, Extremal cases for the log canonical threshold, C. R. Acad. Sci. Paris, Ser. I, 353, № 1, 21–24 (2015). DOI: https://doi.org/10.1016/j.crma.2014.11.002
Copyright (c) 2023 Nhat Quy Hoang
This work is licensed under a Creative Commons Attribution 4.0 International License.