On nonlocal symmetries of a system of chemotaxis equations with derivative nonlinearity

  • M. I. Serov Poltava National Pedagogical University
  • Yu. G. Podoshvelev Poltava National Pedagogical University
Keywords: ansatz, reduction, symmetry, operator, transformation, invariance, system, chemotaxis, diffusion-reaction-convection

Abstract

UDC 517.912

With the help of nonlocal equivalence transformations, the system of chemotaxis equations is associated with a system of convection-diffusion equations.
The Lie symmetry of the obtained system is used to construct nonlocal ansatzes and to reduce and find exact solutions of the system of chemotaxis equations.

References

J. Adler, Chemotaxis bacteria, Sciense, 153, 708 – 716 (1996).

I. S. Akhatov, R. K. Gazizov, N. K. Ibragimov, Nonlocal symmetries. Heuristic approach, J. Sov. Math., 55, № 1, 1401 – 1450 (1991), https://doi.org/10.1007/BF01097533

G. Bluman, S. Kumei, Symmetry-based algorithms to relate partial differential equations. I. Local symmetries, European J. Appl. Math., 1, no. 3, 189 – 216 (1990), https://doi.org/10.1017/S0956792500000176

G. Bluman, S. Kumei, Symmetry-based algorithms to relate partial differential equations. II. Linearization by nonlocal symmetries, European J. Appl. Math., 1, no. 3, 217 – 223 (1990), https://doi.org/10.1017/S0956792500000188

G. W. Bluman, J. D. Cole, The general sismilarity solution of the heat equation, J. Math. Mech., 18, 1025 – 1042 (1968/69).

G. W. Bluman, G. J. Reid, S. Kumei, New classes of symmetries for partial differential equations, J. Math. Phys., 29, № 4, 806 – 811 (1998); https://doi.org/10.1063/1.527974

G. W. Bluman, A. F. Cheviakov, S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Applied Mathematical Sciences, vol. 168, Springer, New York (2010), https://doi.org/10.1007/978-0-387-68028-6

R. M. Cherniha, J. R. King, Lie symmetries of non-linear multidimensional reaction-diffusion systems: I, J. Phys. A, 33, no. 2, 267 – 282 (2000), https://doi.org/10.1088/0305-4470/33/2/304

R. M. Cherniha, J. R. King, Lie symmetries of non-linear multidimensional reaction- diffusion systems: I. Addendum, J. Phys. A, 33, no. 43, 7839 – 7841 (2000), https://doi.org/10.1088/0305-4470/33/43/401

R. M. Cherniha, J. R. King, Lie symmetries of nonlinear multidimensional reaction-diffusion systems: II, J. Phys. A, 36, no. 2, 405 – 425 (2003), https://doi.org/10.1088/0305-4470/36/2/309

R. M. Cherniha, J. R. King, Nonlinear reaction-diffusion systems with variable diffusivities: Lie symmetries, ansatze and exact solutions, J. Math. Anal. Appl., 308, no. 1, 11 – 35 (2005), https://doi.org/10.1016/j.jmaa.2004.10.034

R. Cherniha, M. Serov, O. Pliukhin, Nonlinear Reaction-Diffusion-Convection Equations: Lie and Conditional Symmetry, Exact Solutions and Their Applications. Chapman and Hall/CRC Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, Florida (2018); https://doi.org/10.1201/9781315154848

A. F. Cheviakov, Symbolic computation of equivalence transformations and parameter reduction for nonlinear physical models, Comput. Phys. Commun., 220, 56 – 73 (2017), https://doi.org/10.1016/j.cpc.2017.06.013

W. I. Fushchych, W. M. Shtelen, M. I. Serov, Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics, Mathematics and Its Applications, 246, Kluwer Academic Publishers Group, Dordrcht (1993), https://doi.org/10.1007/978-94-017-3198-0

V. L. Katkov, The group classification of solutions of the Hopf equations, Zh. Prikl. Mekh. Tekhn. Fiz., 6, 105 – 106 (1965).

E. F. Keller, L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30, 225 – 234 (1971).

J. R. King, Some non-local transformations between nonlinear diffusion equations, J. Phys. A: Math. Gen., 23, 5441 – 5464 (1990); https://stacks.iop.org/0305-4470/23/i=23/a=019

S. Lie, Uber die Integration durch bestimmte Integrale von einer Klasse lineare partiellen Differentialgleichungen (in German), Arch. Math., 6, № 3, 328 – 368 (1881); https://doi.org/10.1016/0167-2789(90)90123-7

I. Lisle, Equivalence Transformations for Classes of Differential Equations, Ph.D. thesis, Doctoral dissertation, University of British Columbia (1992).

V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, J. Theor. Biol., 42, № 1, 63 – 105 (1973).

A. G. Nikitin, Group classification of systems of non-linear reaction-diffusion equations with general diffusion matrix. I. Generalized Ginzburg – Landau equations, J. Math. Anal. Appl., 324, no. 1, 615 – 628 (2006), https://doi.org/10.1016/j.jmaa.2005.12.022

A. G. Nikitin, Group classification of systems of non-linear reaction-diffusion equations with general diffusion matrix. II. Generalized Turing systems, J. Math. Anal. Appl., 332, no. 1, 666 – 690 (2007), https://doi.org/10.1016/j.jmaa.2006.10.032

A. G. Nikitin, Group classification of systems of nonlinear reaction-diffusion equations, Ukr. Math. Bull., 2, no. 2, 153 – 204 (2005).

A. G. Nikitin, Group classification of systems of non-linear reaction-diffusion equations with general diffusion matrix. I. Generalized Ginzburg – Landau equations, J. Math. Anal. Appl., 324, no. 1, 615 – 628 (2006), https://doi.org/10.1016/j.jmaa.2005.12.022

A. G. Nikitin, Group classification of systems of nonlinear reaction-diffusion equations with triangular diffusion matrix, Ukr. Math. J., 59, no. 3, 439 – 458 (2007), https://doi.org/10.1007/s11253-007-0028-x

A. G. Nikitin, R. J. Wiltshire, Symmetries of systems of nonlinear reaction-diffusion equations, A. M. Samoilenko (Ed.), Symmetries in Nonlinear Mathematical Physics, Proc, of the Third Int. Conf., Kiev, July 12 – 18 (1999), Inst. Math. Nat. Acad. Sci. Ukraine (2000), pp. 47 – 59.

A. G. Nikitin, R. J. Wiltshire, System of reaction-diffusion equations and their symmetry properties, J. Math. Phys., 422, no. 4, 1666 – 1688 (2001), https://doi.org/10.1063/1.1331318

R. O. Popovych, O. O. Vaneeva, N. M. Ivanova, Potential nonclassical symmetries and solutions of fast diffusion equation, Phys. Lett. A, 362, no. 2-3, 166 – 173 (2007); arXiv: math-ph/0506067, https://doi.org/10.1016/j.physleta.2006.10.015

M. I. Serov, T. O. Karpaliuk, O. G. Pliukhin, I. V. Rassokha, Systems of reaction-convection-diffusion equations invariant under Galilean algebras, J. Math. Anal. Appl., 422, № 1, 185 – 211 (2015); https://doi.org/10.1016/j.jmaa.2014.08.018

M. I. Serov, Yu. V. Prystavka, Nonlokal anzatze, reduction and some exact solution for the system of the van der Waals equations, I., Math. Anal. Appl., 481, no. 1, 98 – 117, 123442 (2020), https://doi.org/10.1016/j.jmaa.2019.123442

V. Tychynin, New nonlocal symmetries of diffusion-convection equations and their connection with generalized hodograph transformation, Symmetry, 7, № 4, 1751 – 1767 (2015); https://doi.org/10.3390/sym7041751

G. R. Ivanickij, A. B. Medvinskij, M. A. Cyganov, Ot besporyadka k uporyadochenosti — na primere dvizheniya mikroorganizmov, Uspekhi fiz. nauk,161, № 4, 13 – 71 (1991).

L. V. Ovsyannikov, Gruppovoj analiz differencial'nyh uravnenij, Nauka, Gl. red. fiz.-mat. lit., Moskva (1978).

P. Olver, Prilozheniya grupp Li k differencial'nym uravneniyam, Mir, Moskva (1989).

M. I. Serov, N. V. Ichans'ka, Liїvs'ka ta umovna simetriї nelinijnih evolyucijnih rivnyan', monografiya; Poltav. nac. tekhn. un-t im. YU. Kondratyuka, PoltNTU, Poltava (2010).

M. I. Serov, Т. O. Karpalyuk, Princip vidnosnosti Galileya dlya evolyucijnih rivnyan', Naukova dumka, Kiyv(2020).

M. I. Serov, O. M. Omelyan, Simetrijni vlastivosti sistemi nelinijnih rivnyan' hemotaksisu, monografiya; Poltav. nac. tekhn. un-t im. YU. Kondratyuka, Poltava (2011).

M. I. Serov, O. M. Omelyan, R. M. Cherniga, Linearizaciya sistem nelinijnih rivnyan' difuziї za dopomogoyu nelokal'nih peretvoren', Dop. NAN Ukraїni, № 10, 39 – 45 (2004).

W. I. Fushchych, M. I. Serov, T. K. Amerov, Nelokal'ni anzaci nelinijnogo odnovimirnogo rivnyannya teploprovidnosti, DAN Ukraїni, 26 – 30 (1992).

Published
26.04.2022
How to Cite
SerovM. I., and PodoshvelevY. G. “On Nonlocal Symmetries of a System of Chemotaxis Equations With Derivative Nonlinearity ”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 3, Apr. 2022, pp. 373-88, doi:10.37863/umzh.v74i3.6997.
Section
Research articles